【摘要】公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)。αABl),,,????????????llBAlBlA(或公理2過不在一條直線上的三點,有且只有一個平面????????CBACBA,,,,使,有且只有一個平面三點不共線αABC公理3如果兩個
2024-08-18 10:54
【摘要】立體幾何公理、定理推論匯總一、公理及其推論公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi)。符號語言:作用: ①用來驗證直線在平面內(nèi);②用來說明平面是無限延展的。公理2如果兩個平面有一個公共點,那么它們還有其他公共點,且所有這些公共點的集合是一條過這個公共點的直線。(那么它們有且只有一條通過這個公共點的公共直線)符號語言:作用:
2025-06-29 04:20
【摘要】必修2第一章空間幾何體知識點總結(jié)正視圖:光線從幾何體的前面向后面正投影得到的投影圖;反映了物體的高度和長度側(cè)視圖:光線從幾何體的左面向右面正投影得到的投影圖;反映了物體的高度和寬度俯視圖:光線從幾何體的上面向下面正投影得到的投影圖。反映了物體的長度和寬度三視圖中反應(yīng)的長、寬、高的特點:“長對正”,“高平齊”,“寬相等”斜二測畫法的基本步驟:①建立適當直角坐標
2025-07-01 00:24
【摘要】平行判定總結(jié)一、線線平行的判定:在同一平面內(nèi),沒有公共點的兩條直線..,經(jīng)過這條直線的平面和這個平面相交,那么這條直線和交線平行.,那么它們的交線平行..二、線面平行的判定:直線與平面無公共
2025-04-10 05:14
【摘要】高中平面解析幾何公式,hero52制作,與大家共勉,08年我們一起取得好成績。初中幾何全部定理、公式1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條
2025-07-02 21:49
【摘要】第一篇:立體幾何判定定理及性質(zhì)定理匯總 立體幾何判定定理及性質(zhì)定理匯總 一線面平行 線面平行判定定理 平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。線面平行性質(zhì)定理 一條直線...
2024-11-06 12:01
【摘要】立體幾何專題復(fù)習(xí)一、【知識總結(jié)】基本圖形1.棱柱——有兩個面互相平行,其余各面都是四邊形,并且每相鄰兩個四邊形的公共邊都互相平行,由這些面所圍成的幾何體叫做棱柱。①②四棱柱底面為平行四邊形平行六面體側(cè)棱垂直于底面直平行六面體底面為矩形長方體底面為正方形正四棱柱側(cè)棱與底面邊長相等正方體
2025-03-31 06:44
【摘要】立體幾何公理、定理推論匯總一、公理及其推論公理1如果一條直線上的兩點在一個平面內(nèi),那么這條直線上所有的點都在這個平面內(nèi)。符號語言:作用: ①用來驗證直線在平面內(nèi);②用來說明平面是無限延展的。公理2如果兩個平面有一個公共點,那么它們還有其他公共點,且所有這些公共點的集合是一條過這個公共點的直線。(那么它們有且只有一條通過這個公共點的公共直線)符號語言:作用:①
2025-07-31 06:10
【摘要】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2024-11-12 12:11
【摘要】立體幾何復(fù)習(xí)講義【基礎(chǔ)回扣】1.平面平面的基本性質(zhì):掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉(zhuǎn)化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內(nèi),推出點在面內(nèi)),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-13 21:19
【摘要】一、基本概念1.空間向量:在空間內(nèi),我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負向量:兩個模相等且方向相反的向量是互為負向量.如的相反向量記為-.
2025-04-23 08:18
【摘要】一輪復(fù)習(xí)之立體幾何姓名一輪復(fù)習(xí)之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設(shè)點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-30 12:16
【摘要】1.[2007年普通高等學(xué)校統(tǒng)一考試(海南、寧夏卷)數(shù)學(xué)文科第8題,理科第8題]20 20 正視圖20 側(cè)視圖101020 俯視圖已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是( ?。粒? B.C. D.2.[2008年普通高等學(xué)校招生全國統(tǒng)一考試(山東
2025-06-13 22:04
【摘要】平面的基本性質(zhì)公理1:如果一條直線上的兩點在一個平面內(nèi),那么這條直線在此平面內(nèi)(教師引導(dǎo)學(xué)生閱讀教材P42前幾行相關(guān)內(nèi)容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內(nèi)生活中,我們看到三腳架可以牢固地支撐照相機或測量用的平板儀等等……C·
2025-04-23 00:53
【摘要】如何學(xué)好立體幾何立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著舉足輕重的作用。下面就如何學(xué)好立體幾何談幾點建議。一立足課本,夯實基礎(chǔ)直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個捷徑就是認真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的
2024-10-08 17:14