【摘要】*垂徑定理第三章圓導入新課講授新課當堂練習課堂小結,了解圓是軸對稱圖形.垂直于弦的直徑的性質和推論,并能應用它解決一些簡單的計算、證明和作圖問題.(重點).(難點)學習目標問題:你知道趙州橋嗎?它的主橋是圓弧形,它的跨度(弧所對的弦的長)為37m,拱高(弧的中點到弦的距離)為,你
2025-06-23 12:05
【摘要】*3垂徑定理,充分掌握圓的軸對稱性.、推理,充分把握圓中的垂徑定理及其逆定理.,與實踐相結合,運用垂徑定理及其逆定理進行有關的計算和證明.點在圓外,這個點到圓心的距離大于半徑點在圓上,點在圓內,這個點到圓心的距離等于半徑這個點到圓心的距離小于半徑ABCO點與圓的位置關系
2025-06-21 02:50
2025-06-21 12:03
【摘要】3垂徑定理第三章圓課堂達標素養(yǎng)提升3垂徑定理第三章圓課堂達標一、選擇題3垂徑定理1.如圖K-21-1,AB是⊙O的直徑,弦CD⊥AB,垂足為M,則下列結論不一定成立的是()A.CM=DM
2025-06-21 12:12
2025-06-22 15:07
2025-06-21 02:56
【摘要】謝謝觀看Thankyouforwatching!
2025-06-19 20:04
2025-06-19 16:15
【摘要】﹡3垂徑定理【基礎梳理】文字敘述幾何語言垂徑定理垂直于弦的直徑_____這條弦,并且_____弦所對的弧∵CD⊥AB,∴AE__BE,平分平分=ADBD?文字敘述幾何語言垂徑定理的推論平分弦(不是直徑)的直徑
2025-06-27 02:47
2025-06-18 12:39
【摘要】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)◆知識導航◆典例導學◆反饋演練(◎
2025-06-18 12:29
2025-06-18 12:28
【摘要】第三章圓由圓的對稱性可引出許多重要定理,垂徑定理是其中比較重要的一個,它將線段、角與圓弧連接起來,解題的常用方法是構造直角三角形,常與勾股定理和解直角三角形知識結合起來.類型1平分弦(不是直徑)的直徑,AB是☉O的弦,OC為半徑,與AB交于點D,且AD=BD,已知AB=6cm,OD=4cm,則DC的長為(
2025-06-18 00:42
【摘要】EE
2025-06-20 05:17
2025-06-21 08:40