【摘要】3垂徑定理第三章圓課堂達標(biāo)素養(yǎng)提升3垂徑定理第三章圓課堂達標(biāo)一、選擇題3垂徑定理1.如圖K-21-1,AB是⊙O的直徑,弦CD⊥AB,垂足為M,則下列結(jié)論不一定成立的是()A.CM=DM
2025-06-22 15:07
【摘要】*垂徑定理第三章圓導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié),了解圓是軸對稱圖形.垂直于弦的直徑的性質(zhì)和推論,并能應(yīng)用它解決一些簡單的計算、證明和作圖問題.(重點).(難點)學(xué)習(xí)目標(biāo)問題:你知道趙州橋嗎?它的主橋是圓弧形,它的跨度(弧所對的弦的長)為37m,拱高(弧的中點到弦的距離)為,你
2025-06-23 12:05
2025-06-21 12:03
【摘要】第三章圓知識點1垂徑定理及推論(A)①弦的垂直平分線經(jīng)過圓心;②平分弦的直徑垂直于弦;③平分弦的直徑平分弦所對的兩段弧.☉O中,弦AB的長為6,圓心O到AB的距離為4,則☉O的半徑為(C)3.(瀘州中考)如圖,AB是☉O的直徑,弦C
【摘要】*3垂徑定理,充分掌握圓的軸對稱性.、推理,充分把握圓中的垂徑定理及其逆定理.,與實踐相結(jié)合,運用垂徑定理及其逆定理進行有關(guān)的計算和證明.點在圓外,這個點到圓心的距離大于半徑點在圓上,點在圓內(nèi),這個點到圓心的距離等于半徑這個點到圓心的距離小于半徑ABCO點與圓的位置關(guān)系
2025-06-21 02:50
2025-06-21 02:56
【摘要】謝謝觀看Thankyouforwatching!
2025-06-19 20:04
2025-06-19 16:15
【摘要】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎
2025-06-20 05:17
2025-06-20 05:20
【摘要】北京師范大學(xué)出版社九年級|下冊第三章圓3垂徑定理【創(chuàng)設(shè)情境】問題1請拿出準(zhǔn)備好的囿形紙片,將其沿囿心所在的任一條直線對折,你會發(fā)現(xiàn)什么?多折幾次試一試.追問1:由折紙可知囿是軸對稱圖形嗎?追問2:如果是一個殘缺的囿形紙片,你能找到它的囿心嗎?北京師范大學(xué)出版社九年級|下冊
2025-06-23 20:15
2025-06-26 03:51
【摘要】問題:你知道趙州橋嗎?它是1300多年前我國隋代建造的石拱橋,是我國古代人民勤勞與智慧的結(jié)晶.它的主橋是圓弧形,它的跨度(弧所對的弦的長)為,拱高(弧的中點到弦的距離)為,你能求出趙洲橋主橋拱的半徑嗎?趙州橋主橋拱的半徑是多少?第三章圓·OABCDE沿著圓的任意一條
2024-11-25 22:39
【摘要】第三章圓由圓的對稱性可引出許多重要定理,垂徑定理是其中比較重要的一個,它將線段、角與圓弧連接起來,解題的常用方法是構(gòu)造直角三角形,常與勾股定理和解直角三角形知識結(jié)合起來.類型1平分弦(不是直徑)的直徑,AB是☉O的弦,OC為半徑,與AB交于點D,且AD=BD,已知AB=6cm,OD=4cm,則DC的長為(
2025-06-18 00:42
【摘要】EE