【摘要】第2課時(shí)勾股定理(二),也可以表示,數(shù)軸上的點(diǎn)和.一一對(duì)應(yīng).(,,…)的點(diǎn).如圖所示..有關(guān)銳角三角形或鈍角三角形的計(jì)算問(wèn)題也可以轉(zhuǎn)化為含有三角形的計(jì)算問(wèn)題,應(yīng)用勾股定理加以解決,關(guān)鍵在于找出這個(gè)三角形.23無(wú)理數(shù)實(shí)數(shù)
2025-06-18 12:23
【摘要】第十七章勾股定理勾股定理第2課時(shí)勾股定理的實(shí)際應(yīng)用學(xué)習(xí)指南知識(shí)管理歸類(lèi)探究分層作業(yè)當(dāng)堂測(cè)評(píng)學(xué)習(xí)指南★本節(jié)學(xué)習(xí)主要解決以下問(wèn)題★勾股定理的實(shí)際應(yīng)用此內(nèi)容為本節(jié)的重點(diǎn),也是難點(diǎn).為此設(shè)計(jì)了【歸類(lèi)探究】中
2025-06-22 12:10
【摘要】勾股定理第3課時(shí)【基礎(chǔ)梳理】在數(shù)軸上找表示的點(diǎn)要在數(shù)軸上畫(huà)出表示的點(diǎn),只要畫(huà)出長(zhǎng)為的線段即可.利用勾股定理,長(zhǎng)為的線段是直角邊為正整數(shù)__,__的直角三角形的斜邊.2313131313如圖,在數(shù)軸上找出表示3的點(diǎn)A,則OA=__,過(guò)點(diǎn)A作直線l垂直于O
2025-06-18 12:38
【摘要】第十七章勾股定理勾股定理第1課時(shí)【基礎(chǔ)梳理】勾股定理1的小正方形,則正方形A的面積是__,正方形B的面積是___,正方形C的面積=邊長(zhǎng)為7的正方形與4個(gè)直角邊為_(kāi)____的直角三角形的面積差為_(kāi)__.9163和425a,b,斜邊長(zhǎng)為c,那么___
2025-06-18 21:09
2025-06-18 21:10
【摘要】勾股定理第2課時(shí)a,b,斜邊為a2=()b2=()c2=()c2-b2c2-a2a2+b2ABCD中,寬AB為1m,長(zhǎng)BC為2m,求AC長(zhǎng).1m2mACBD??2222125m
2025-06-19 05:52
2025-06-18 12:36
2025-06-19 14:25
【摘要】勾股定理第十七章勾股定理導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)八年級(jí)數(shù)學(xué)下(RJ)教學(xué)課件第1課時(shí)勾股定理學(xué)習(xí)目標(biāo),了解關(guān)于勾股定理的一些文化歷史背景,會(huì)用面積法來(lái)證明勾股定理,體會(huì)數(shù)形結(jié)合的思想.(重點(diǎn)).(難點(diǎn))
2025-06-18 06:33
【摘要】第2課時(shí) 勾股定理的應(yīng)用知識(shí)點(diǎn)1知識(shí)點(diǎn)2勾股定理的實(shí)際應(yīng)用樹(shù),一棵高10?m,另一棵高4?m,兩樹(shù)相距8?鳥(niǎo)從一棵樹(shù)的樹(shù)梢飛到另一棵樹(shù)的樹(shù)梢,問(wèn)小鳥(niǎo)至少飛行(??B??)?m?m?m?m
2025-06-21 12:01
【摘要】第2課時(shí) 勾股定理的實(shí)際應(yīng)用實(shí)際生活中的與直角三角形有關(guān)的許多問(wèn)題.如長(zhǎng)度、高度、距離、面積、體積等問(wèn)題往往需要用勾股定理來(lái)解決.強(qiáng)量得家里新購(gòu)置的彩電熒光屏的長(zhǎng)為58cm,寬為46cm,則這臺(tái)電視機(jī)的尺寸(即電視機(jī)屏幕對(duì)角線的長(zhǎng)度,實(shí)際測(cè)量的誤差可不計(jì))是( )(約2
2025-06-20 05:26
【摘要】第十七章勾股定理勾股定理(第2課時(shí))湖北省赤壁市教研室來(lái)小靜八年級(jí)下冊(cè)復(fù)習(xí)提問(wèn)問(wèn)題1勾股定理的內(nèi)容是什么?問(wèn)題2勾股定理有什么用途?解析:注意三種語(yǔ)言的表述.請(qǐng)學(xué)生畫(huà)出圖形、說(shuō)明已知條件,寫(xiě)出結(jié)論.解析:勾股定理的運(yùn)用條件是在直角三角形中,已知兩邊求第三邊.在解直角三角形時(shí)
2024-08-14 13:28
【摘要】勾股定理第2課時(shí)勾股定理的實(shí)際應(yīng)用第2課時(shí)勾股定理的實(shí)際應(yīng)用知識(shí)目標(biāo)1.在理解直角三角形三邊關(guān)系的基礎(chǔ)上,通過(guò)對(duì)實(shí)際問(wèn)題的分析,能用勾股定理解決與直角三角形三邊有關(guān)的實(shí)際問(wèn)題.2.利用勾股定理,結(jié)合“兩點(diǎn)之間,線段最短”,會(huì)求平面上兩點(diǎn)之間的最短距離.3.在掌握立體圖形展開(kāi)圖的前提下,利用勾股定理求立體圖
2025-06-23 01:48
【摘要】勾股定理第1課時(shí)勾股定理(一)如果直角三角形的兩條直角邊長(zhǎng)分別為a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.如圖,在△ABC中,∠C=90°.(1)若已知a,b,則斜邊c=;(2)若已知a,c,則b=;(3)若已知c,b,則a=.22
2025-06-18 12:25