【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)(1)y=sinx、y=cosx的圖象一、復(fù)習(xí):2??23?11?.yxO?2....作出y=sinx,y=cosx,x∈[0,2π]的圖象2??23?.yxO?2....-11與x軸的交點(
2025-06-12 00:10
【摘要】正弦函數(shù)、余弦函數(shù)的圖象新課講授圖象的幾何作法???2,0sin??xxy,由于在單位圓中,角x的正弦線表示其正弦值,因此可將正弦線移動到直角坐標系中確定對應(yīng)的點(x,sinx),從而作出函數(shù)圖象.PM3?1Oxy1如:作正弦線
2025-06-11 23:39
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)(3)正弦函數(shù)的圖象性質(zhì):(1)定義域(2)值域R.[-1,1].當且僅當時取得最大值1,當且僅當時取得最小值-1.Zkkx???,??22Zkkx????,??22(3)奇偶性奇函數(shù).(5
【摘要】正弦函數(shù)、余弦函數(shù)的性質(zhì)(2)-----1-1-----1-1-----1-1正弦函數(shù)的圖象性質(zhì):(1)定義域(2)值域R.[-1,1].當且僅當時取得最大值1,當且僅當時取得最小值-1.
2025-06-12 00:28
【摘要】第一章三角函數(shù)函數(shù)y=Asin(ωx+φ)的圖象(二)1.了解A,ω,φ的物理意義.(重點)2.了解y=Asin(ωx+φ)的實際意義,會用y=Asin(ωx+φ)的性質(zhì)解題.(重點、難點)3.能根據(jù)y=Asin(ωx+φ)的部分圖象,確定其解析式.(重點、難點)
2024-12-12 18:51
【摘要】第一章三角函數(shù)函數(shù)y=Asin(ωx+φ)的圖象(一)1.會用平移、伸縮變換畫函數(shù)y=Asin(ωx+φ)的圖象.(重點、易錯點)2.注意先平移再變換周期與先變換周期再平移的區(qū)別.(難點、易錯點)A,ω,φ對函數(shù)y=Asin(ωx+φ)圖象的影響(1)φ對函數(shù)y=sin(x+
【摘要】sin()yAx????問題提出圖象是由函數(shù)的圖象經(jīng)過怎樣的變換而得到的?)sin(???xyxysin?的圖象,可以看作是把正弦曲線上所有的點向左(當>0時)或向右(當<0時)平行移動||個單位長度而得到.)si
2024-11-26 12:17
【摘要】1.平面的表示方法.P.Q2.與平面有關(guān)的三個公理公理1.P.Q公理1的符號語言描述:畫兩個平面相交,當一個平面的一部分被另一個平面遮住時,應(yīng)把被遮部分的線段畫成虛線或不畫.公理2公理1的符號語言描述:畫兩個平面相交,當一個平面的一部分被另一個平面遮住時,應(yīng)把被遮部分的線段畫成
【摘要】sin()yAx????問題提出y=sinx的定義域、值域分別是什么?它有哪些基本性質(zhì)??y-1xO1π2π3π4π5π6π-2π-3π-4π-5π-6π-π4.、、A是影響函數(shù)圖象形態(tài)的重要參數(shù),對此,我們分別進行
2024-11-25 12:03
【摘要】問題引入:空間中平面與平面有哪些位置關(guān)系?(1)面面平行——無公共點(2)面面相交——有無數(shù)交點,共于交線面面平行的判定1.從定義入手?2.從降維思想轉(zhuǎn)化?1)?面面平行線面平行?2)?面面平行線線平行?探究:(1)//????平面
【摘要】函數(shù)y=Asin(ωx+φ)的圖象(一)選擇題象做以下變換得到的[]圖象
2024-12-10 10:15
【摘要】角度弧度?060?120?135?2704?2?65???2?306?453??9032?43??150?18
2025-06-11 23:51
【摘要】Oyx圓在坐標系下有什么樣的方程?解析幾何的基本思想2、確定圓有需要幾個要素?圓心--確定圓的位置(定位)半徑--確定圓的大小(定形)平面內(nèi)與定點距離等于定長的點的集合(軌跡)是圓.1、什么是圓?Ox
【摘要】函數(shù)y=Asin(ωx+φ)的圖象考查知識點及角度難易度及題號基礎(chǔ)中檔稍難“五點法”畫y=Asin(ωx+φ)的圖象10平移變換和伸縮變換1、2、3、4、56、7、9綜合問題8、11121.將函數(shù)y=sinx的圖象上所有的點向右平移π10個單位長
2024-12-13 06:48
【摘要】課題函數(shù)y=Asin(ωx+φ)的圖象教學(xué)目標知識與技能掌握y=sinx與y=Asin(ωx+φ)圖象間的變換關(guān)系,并能正確地指出其變換步驟.過程與方法兩種途徑的變換順序不同,其中變換的量也有所不同情感態(tài)度價值觀數(shù)形結(jié)合識記結(jié)論重點理解y=Asin(ωx+φ)中
2024-12-13 01:56