【正文】
項和反 inverse of transfer of servovalve control hydraulic cylinders and inverse of transpose of Jacobian matrix (J l T ) ?1 in inner control loop, see Fig. 3 轉(zhuǎn)移的伺服閥控制液壓缸和逆,轉(zhuǎn)置雅 可比矩陣 (J l T ) ?1在內(nèi)部控制回路中,見圖 3 Figure 3. PD with gravity pensation control scheme for 6DOF hydraulic driven parallel manipulator 圖 3。 The JS uses mechanism inverse kinematics for puting desired cylinder length trajectories from desired Cartesian trajectories, see Fig. 2. JS 利用機構(gòu)逆運動學(xué)計算所需的氣缸長度軌跡所需的笛卡爾軌跡,見圖 2。 The applied forces τ is transformed from mechanism actuator forces, which is given by τ= JlT *Fa ( 4) 應(yīng)用部隊 τ轉(zhuǎn)化機制的執(zhí)行力,這是由 τ= JlT *Fa ( 4) where J l is a Jacobian 66 matrix of transformation between generalized velocity Θ of platform and protraction velocity l of hydraulic cylinders, and Fa is a 61 vector representing cylinder forces. J1是 雅可比矩陣 66之間轉(zhuǎn)換的廣義速度 Θ平臺和牽引速度的液壓缸, Fa是一個 61向量表示氣缸的力量。 Inverse kinematics of parallel manipulator is different from serial manipulator, the length of leg of platform can be solved by closedform solution, and it can be described by L ??( R ?A ??B) ??t ( 2) where L is a 36 length matrix of leg of platform, R is a 33 rotation matrix from body coordinates to global coordinates, A is a 36 matrix of upper joints points, B is a 36 matrix of down joints points, and t is position 31 vector of platform. 并聯(lián)機器人逆運動學(xué)的不同長度的串聯(lián)機器人,腿平臺可以解決,封閉形式的解決方案,它可以描述 L ??( R ?A ??B) ??t ( 2) L是一個 36長度矩陣腿平臺, R是一個 33旋轉(zhuǎn)矩陣坐標(biāo)的全球坐標(biāo), A 是一個 36矩陣的關(guān)節(jié)點上, B 是一個36矩陣的下關(guān)節(jié)點位置, t是 31載體平臺。 Figure 1. Hydraulic driven 6DOF parallel manipulator 圖 1。 The modelbased controller, PD control with gravity pensation, is developed to reduce the effect of load variety of platform and eliminate steady state error of hydraulic driven parallel manipulator. 基于模型的控制器,控制重力補償,以減少開發(fā)影響負(fù)載多種平臺和消除穩(wěn)態(tài)誤差的液壓驅(qū)動并聯(lián)機器人。 The developed controller employs rigid 該控制器采用剛體動力學(xué)和產(chǎn)量的輸 body dynamic and yields the input current vector of the servovalve, the dynamic gravity term including the gravity of platform, load and hydraulic cylinders is used to pensate the influence of gravity of parallel manipulator platform. 入電流矢量的伺服閥,動態(tài)重力項包括重力平臺,負(fù)載和液壓缸,用于補償重力的影響,對并聯(lián)機器人平臺。 A modelbased controller for 6DOF hydraulic driven parallel manipulator with symmetric joint locations is developed to reduce the effect of load variety of platform and eliminate the steady state error of the control systems 基于模型的控制器的六自由度液壓驅(qū)動并聯(lián)機器人的對稱關(guān)節(jié)的位置來降低負(fù)載的影響多種平臺和消除穩(wěn)態(tài)誤差的控制系統(tǒng) Multirigid body dynamics models are built considering the GoughStewart platform as 13 rigid body based on Kane method. 多剛體動力學(xué)模型的建立,考慮到斯圖爾特的平臺有 13剛體基于凱恩方法。 Kim et al. [12] researched and applied a high speed tracking control for 6DOF electric driven Stewart platform using an enhanced sliding mode control approach. 基姆等人。 Liu et al [8] discussed taskspace control scheme for Stewart platform based milling cell. 劉等人 [ 8]討論工作空間控制方案的斯圖爾特平臺銑削單元。 Do and Yang [6] used the NewtonEuler approach to solve the inverse dynamics for Stewart platform assuming the joints as frictionless and legs asymmetrical. 和陽 [ 6 ]采用牛頓 歐拉法求解逆動力學(xué)假設(shè)斯圖爾特平臺關(guān)節(jié)摩擦和腿不對稱。 6DOF parallel manipulator is named Stewart platform after Stewart illustrated the use of such parallel structure [3],it is also referred to as Goughplatform who presented the practical use of such a system [4]. 六自由度并聯(lián)機器人取名斯圖爾特平臺后,斯圖爾特說明使用這種平行結(jié)構(gòu)[ 3],它也被稱為高夫平臺 ,高夫 提出實際使用這種系統(tǒng) [ 4]。 dynam–ics。 Keywords 關(guān)鍵詞 parallel manipulator。 The performance of the control scheme for 6DOF parallel manipulato