【摘要】標準方程范圍對稱性頂點坐標焦點坐標半軸長離心率a、b、c的關系22221(0)xyabab????|x|≤a,|y|≤b關于x軸、y軸成軸對稱;關于原點成中心對稱(a,0)、(-a,0)、(0,b)、(0,-b)(c,0)、(-c,0)長半軸
2025-05-18 00:31
2025-05-18 00:42
【摘要】《橢圓的簡單幾何性質》教學設計【教學目標】:(1).使學生掌握橢圓的性質,能根據(jù)性質正確地作出橢圓草圖;掌握橢圓中a、b、c的幾何意義及相互關系;(2)通過對橢圓標準方程的討論,使學生知道在解析幾何中是怎樣用代數(shù)方法研究曲線性質的,逐步領會解析法(坐標法)的思想。(3)能利用橢圓的性質解決實際問題。:培養(yǎng)學生觀察、分析、抽象、概括的邏輯思維能力和運用數(shù)形
2025-04-23 04:14
【摘要】典型例題一例1橢圓的一個頂點為,其長軸長是短軸長的2倍,求橢圓的標準方程.分析:題目沒有指出焦點的位置,要考慮兩種位置.解:(1)當為長軸端點時,,,橢圓的標準方程為:;(2)當為短軸端點時,,,橢圓的標準方程為:;說明:橢圓的標準方程有兩個,給出一個頂點的坐標和對稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.典型例題二例2一個
2025-03-31 04:50
【摘要】出題人:李秋天陳繼波鄒玉超【學習目標】1.熟練掌握橢圓的范圍,對稱性,頂點等簡單幾何性質2.掌握標準方程中的幾何意義,以及的相互關系3.理解、掌握坐標法中根據(jù)曲線的方程研究曲線的幾何性質的一般方法【學習重點】:橢圓的幾何性質【學習難點】:如何貫徹
2025-07-30 04:51
【摘要】欄目導引新知初探思維啟動典題例證技法歸納知能演練輕松闖關第二章圓錐曲線與方程2.橢圓的簡單幾何性質習題課第1課時橢圓的簡單幾何性質欄目導引新知初探思維啟動典題例證技法歸納知能演練輕松闖關第二章圓錐曲線與方程學習導航
2025-07-31 10:50
【摘要】幾何性質(二)標準方程范圍對稱性頂點坐標焦點坐標半軸長離心率a、b、c的關系22221(0)xyabab????|x|≤a,|y|≤b關于x軸、y軸成軸對稱;關于原點成中心對稱(a,0)、(-a,0)、(0,b)、(0,-b)
2025-07-30 04:32
【摘要】1橢圓的標準方程橢圓的簡單幾何性質(二)()xyabab222210????圖形12yoFFMx焦點F1(-c,0),F(xiàn)2(c,0)()cab22??范圍,??≤≤≤≤axabyb頂點????(,)(,)AaAa12
【摘要】單幾何性質(2)2(,)(4,0)254:45MxyFlxM?例點與定點的距離和它到直線的距離的比是常數(shù),求點的軌跡。,54425:?????????????dMFMPMxlMd的軌跡就是集
2025-07-31 14:45
【摘要】橢圓的簡單幾何性質??0ba1byax2222????焦點在x軸上12yoFFMx222cba??橢圓的標準方程??0ba1bxay2222????焦點在y軸上222cba??yo1
2025-07-31 14:47
【摘要】高中數(shù)學選修2-1第二章曲線與方程第二課時橢圓的簡單幾何性質1.橢圓的范圍、對稱性、頂點、離心率??222222210,yxababcab??????范圍:-a≤y≤a,-b≤x≤b.對稱性:關于x軸、y軸、原點對稱.頂點:(0
2025-08-01 03:55
【摘要】橢圓的簡單幾何性質測試卷典型例題一例1橢圓的一個頂點為,其長軸長是短軸長的2倍,求橢圓的標準方程.分析:題目沒有指出焦點的位置,要考慮兩種位置.解:(1)當為長軸端點時,,,橢圓的標準方程為:;(2)當為短軸端點時,,,橢圓的標準方程為:;說明:橢圓的標準方程有兩個,給出一個頂點的坐標和對稱軸的位置,是不能確定橢圓的橫豎的,因而要考慮兩種情況.
2025-08-10 17:12
【摘要】課時作業(yè)(八)一、選擇題1.(2015·人大附中月考)焦點在x軸上,短軸長為8,離心率為的橢圓的標準方程是( )A.+=1 B.+=1C.+=1 D.+=1【解析】 本題考查橢圓的標準方程.由題意知2b=8,得b=4,所以b2=a2-c2=16,又e==,解得c=3,a=5,又焦點在x軸上,故橢圓的標準方程為+=1,故選C.【答案】 C2.
2025-03-31 04:51
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當焦點在X軸上時當焦點在Y軸上時)0(12222????babyax)0(12222????
2024-11-29 02:20
【摘要】復習::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關系是:a2=b2+c2當焦點在X軸上時當焦點在Y軸上時二、橢圓簡單的幾何性質1、范圍:
2024-11-20 18:11