freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

第一章三角函數(shù)教案-文庫(kù)吧資料

2025-04-23 08:03本頁(yè)面
  

【正文】 系.例3設(shè)點(diǎn)P是線段P1P2上的一點(diǎn), PP2的坐標(biāo)分別是(x1,y1),(x2,y2).(1) 當(dāng)點(diǎn)P是線段P1P2的中點(diǎn)時(shí),求點(diǎn)P的坐標(biāo); (2) 當(dāng)點(diǎn)P是線段P1P2的一個(gè)三等分點(diǎn)時(shí),求點(diǎn)P的坐標(biāo).例4若向量=(1,x)與=(x, 2)共線且方向相同,求x解:∵=(1,x)與=(x, 2) 共線 ∴(1)2 x?(x)=0 ∴x=177。.由=λ得, (x1, y1) =λ(x2, y2) 消去λ,x1y2x2y1=0探究:(1)消去λ時(shí)不能兩式相除,∵y1, y2有可能為0, ∵185。 平面向量共線的坐標(biāo)表示教學(xué)目的:(1)理解平面向量的坐標(biāo)的概念;(2)掌握平面向量的坐標(biāo)運(yùn)算;(3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線. 教學(xué)重點(diǎn):平面向量的坐標(biāo)運(yùn)算教學(xué)難點(diǎn):向量的坐標(biāo)表示的理解及運(yùn)算的準(zhǔn)確性授課類型:新授課教 具:多媒體、實(shí)物投影儀教學(xué)過(guò)程:一、復(fù)習(xí)引入:1.平面向量的坐標(biāo)表示分別取與軸、軸方向相同的兩個(gè)單位向量、由平面向量基本定理知,有且只有一對(duì)實(shí)數(shù)、使得把叫做向量的(直角)坐標(biāo),記作其中叫做在軸上的坐標(biāo),叫做在軸上的坐標(biāo), 特別地,.2.平面向量的坐標(biāo)運(yùn)算若,則,.若,則二、講解新課:∥ (185?!?67。 平面向量基本定理教學(xué)目的:(1)了解平面向量基本定理;(2)理解平面里的任何一個(gè)向量都可以用兩個(gè)不共線的向量來(lái)表示,初步掌握應(yīng)用向量解決實(shí)際問(wèn)題的重要思想方法;(3)能夠在具體問(wèn)題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來(lái)表達(dá). 教學(xué)重點(diǎn):平面向量基本定理.教學(xué)難點(diǎn):平面向量基本定理的理解與應(yīng)用.授課類型:新授課教 具:多媒體、實(shí)物投影儀教學(xué)過(guò)程:一、 復(fù)習(xí)引入:1.實(shí)數(shù)與向量的積:實(shí)數(shù)λ與向量的積是一個(gè)向量,記作:λ(1)|λ|=|λ|||;(2)λ0時(shí)λ與方向相同;λ0時(shí)λ與方向相反;λ=0時(shí)λ=2.運(yùn)算定律結(jié)合律:λ(μ)=(λμ) ;分配律:(λ+μ)=λ+μ, λ(+)=λ+λ 3. 向量共線定理 向量與非零向量共線的充要條件是:有且只有一個(gè)非零實(shí)數(shù)λ,使=λ.二、講解新課:平面向量基本定理:如果,是同一平面內(nèi)的兩個(gè)不共線向量,那么對(duì)于這一平面內(nèi)的任一向量,有且只有一對(duì)實(shí)數(shù)λ1,λ2使=λ1+λ2.探究:(1) 我們把不共線向量e1、e2叫做表示這一平面內(nèi)所有向量的一組基底;(2) 基底不惟一,關(guān)鍵是不共線;(3) 由定理可將任一向量a在給出基底e1、e2的條件下進(jìn)行分解;(4) 基底給定時(shí),分解形式惟一. λ1,λ2是被,唯一確定的數(shù)量三、講解范例:例1 已知向量, +3.例2 如圖 ABCD的兩條對(duì)角線交于點(diǎn)M,且=,=,用,表示,和 例3已知 ABCD的兩條對(duì)角線AC與BD交于E,O是任意一點(diǎn),求證:+++=4例4(1)如圖,不共線,=t (t206。表示a :差向量“箭頭”指向被減數(shù)OABaB’bbbBa+ (b)ab 2176。 向量的加法運(yùn)算及其幾何意義教學(xué)目標(biāo): 掌握向量的加法運(yùn)算,并理解其幾何意義; 會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的和向量,培養(yǎng)數(shù)形結(jié)合解決問(wèn)題的能力; 通過(guò)將向量運(yùn)算與熟悉的數(shù)的運(yùn)算進(jìn)行類比,使學(xué)生掌握向量加法運(yùn)算的交換律和結(jié)合律,并會(huì)用它們進(jìn)行向量計(jì)算,滲透類比的數(shù)學(xué)方法;教學(xué)重點(diǎn):會(huì)用向量加法的三角形法則和平行四邊形法則作兩個(gè)向量的和向量.教學(xué)難點(diǎn):理解向量加法的定義.學(xué) 法:數(shù)能進(jìn)行運(yùn)算,向量是否也能進(jìn)行運(yùn)算呢?數(shù)的加法啟發(fā)我們,從運(yùn)算的角度看,位移的合成、力的合成來(lái)理解向量的加法,.教 具:多媒體或?qū)嵨锿队皟x,尺規(guī)授課類型:新授課教學(xué)思路:一、設(shè)置情景: 復(fù)習(xí):向量的定義以及有關(guān)概念強(qiáng)調(diào):、我們研究的向量是與起點(diǎn)無(wú)關(guān)的自由向量,即任何向量可以在不改變它的方向和大小的前提下,移到任何位置A B C 情景設(shè)置:(1)某人從A到B,再?gòu)腂按原方向到C,C A B 則兩次的位移和:(2)若上題改為從A到B,再?gòu)腂按反方向到C,A BC 則兩次的位移和:(3)某車從A到B,再?gòu)腂改變方向到C,A BC 則兩次的位移和:(4)船速為,水速為,則兩速度和:二、探索研究:1、向量的加法:求兩個(gè)向量和的運(yùn)算,叫做向量的加法.2、三角形法則(“首尾相接,首尾連”)如圖,已知向量a、作=a,=b,則向量叫做a與b的和,記作a+b,即 a+b,規(guī)定: a + 0= 0 +aa aABCa+ba+baabbabba+ba探究:(1)兩相向量的和仍是一個(gè)向量;(2)當(dāng)向量與不共線時(shí),+的方向不同向,且|+|||+||;OABaaabbb(3)當(dāng)與同向時(shí),則+、同向,且|+|=||+||,當(dāng)與反向時(shí),若||||,則+的方向與相同,且|+|=||||;若||||,則+的方向與相同,且|+b|=||||.(4)“向量平移”(自由向量):使前一個(gè)向量的終點(diǎn)為后一個(gè)向量的起點(diǎn),可以推廣到n個(gè)向量連加3.例一、已知向量、求作向量+ 作法:在平面內(nèi)取一點(diǎn),作 ,則.4.加法的交換律和平行四邊形法則問(wèn)題:上題中+的結(jié)果與+是否相同? 驗(yàn)證結(jié)果相同從而得到:1)向量加法的平行四邊形法則(對(duì)于兩個(gè)向量共線不適應(yīng)) 2)向量加法的交換律:+=+5.向量加法的結(jié)合律:(+) +=+ (+)證:如圖:使, , 則(+) +=,+ (+) =∴(+) +=+ (+)從而,多個(gè)向量的加法運(yùn)算可以按照任意的次序、任意的組合來(lái)進(jìn)行.三、應(yīng)用舉例:例二(P94—95)略練習(xí):P95四、小結(jié) 向量加法的幾何意義;2、交換律和結(jié)合律;3、注意:|+| ≤ || + ||,當(dāng)且僅當(dāng)方向相同時(shí)取等號(hào).五、課后作業(yè):P103第2、3題六、板書設(shè)計(jì)(略)七、備用習(xí)題一艘船從A點(diǎn)出發(fā)以的速度向垂直于對(duì)岸的方向行駛,船的實(shí)際航行的速度的大小為,求水流的速度.一艘船距對(duì)岸,以的速度向垂直于對(duì)岸的方向行駛,到達(dá)對(duì)岸時(shí),船的實(shí)際航程為8km,求河水的流速.一艘船從A點(diǎn)出發(fā)以的速度向垂直于對(duì)岸的方向行駛,同時(shí)河水的流速為,船的實(shí)際航行的速度的大小為,方向與水流間的夾角是,求和.一艘船以5km/h的速度在行駛,同時(shí)河水的流速為2km/h,則船的實(shí)際航行速度大小最大是km/h,最小是km/h5、已知兩個(gè)力F1,F(xiàn)2的夾角是直角,且已知它們的合力F與F1的夾角是60,|F|=10N求F1和F2的大小.6、用向量加法證明:兩條對(duì)角線互相平分的四邊形是平行四邊形第3課時(shí)167。注意三角恒等式的證明方法與步驟.第二章 平面向量本章內(nèi)容介紹向量這一概念是由物理學(xué)和工程技術(shù)抽象出來(lái)的,是近代數(shù)學(xué)中重要和基本的數(shù)學(xué)概念之一,有深刻的幾何背景,全等和平行(平移)、相似、垂直、勾股定理就可轉(zhuǎn)化為向量的加(減)法、數(shù)乘向量、數(shù)量積運(yùn)算,從而把圖形的基本性質(zhì)轉(zhuǎn)化為向量的運(yùn)算體系.向量是溝通代數(shù)、幾何與三角函數(shù)的一種工具,學(xué)生將了解向量豐富的實(shí)際背景,理解平面向量及其運(yùn)算的意義,學(xué)習(xí)平面向量的線性運(yùn)算、平面向量的基本定理及坐標(biāo)表示、平面向量的數(shù)量積、. 本節(jié)從物理上的力和位移出發(fā),抽象出向量的概念,并說(shuō)明了向量與數(shù)量的區(qū)別,然后介紹了向量的一些基本概念. (讓學(xué)生對(duì)整章有個(gè)初步的、全面的了解.)第1課時(shí)167。 (2)。 (3)。 .思考:,角的概念推廣以后,我們應(yīng)該如何對(duì)初中的三角函數(shù)的定義進(jìn)行修改,以利推廣到任意角呢?本節(jié)課就研究這個(gè)問(wèn)題――任意角的三角函數(shù).【探究新知】:結(jié)合上述銳角的三角函數(shù)值的求法,我們應(yīng)如何求解任意角的三角函數(shù)值呢? 顯然,我們只需在角的終邊上找到一個(gè)點(diǎn),使這個(gè)點(diǎn)到原點(diǎn)的距離為1,我們?cè)诖艘雴挝粓A的定義:在直角坐標(biāo)系中,我們稱以原點(diǎn)為圓心,以單位長(zhǎng)度為半徑的圓.:如何利用單位圓定義任意角的三角函數(shù)的定義?如圖,設(shè)是一個(gè)任意角,它的終邊與單位圓交于點(diǎn),那么:(1)叫做的正弦(sine),記做,即;(2)叫做的余弦(cossine),記做,即;(3)叫做的正切(tangent),記做,即.注意:當(dāng)α是銳角時(shí),此定義與初中定義相同(指出對(duì)邊,鄰邊,斜邊所在);當(dāng)α不是銳角時(shí),也能夠找出三角函數(shù),因?yàn)?,既然有角,就必然有終邊,終邊就必然與單位圓有交點(diǎn),從而就必然能夠最終算出三角函數(shù)值.:如果知道角終邊上一點(diǎn),而這個(gè)點(diǎn)不是終邊與單位圓的交點(diǎn),該如何求它的三角函數(shù)值呢?前面我們已經(jīng)知道,三角函數(shù)的值與點(diǎn)在終邊上的位置無(wú)關(guān),,那么,.所以,三角函數(shù)是以為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù),又因?yàn)榻堑募吓c實(shí)數(shù)集之間可以建立一一對(duì)應(yīng)關(guān)系,故三角函數(shù)也可以看成實(shí)數(shù)為自變量的函數(shù).、余弦和正切值.例2.已知角的終邊過(guò)點(diǎn),求角的正弦、余弦和正切值.教材給出這兩個(gè)例題,:如例2:設(shè)則.于是 ,.,2,3題:請(qǐng)根據(jù)任意角的三角函數(shù)定義,將正弦、余弦和正切函數(shù)的定義域填入下表;再將這三種函數(shù)的值在各個(gè)象限的符號(hào)填入表格中:三角函數(shù)定義域第一象限第二象限第三象限第四象限角度制弧度制7.例題講評(píng)例3.求證:當(dāng)且僅當(dāng)不等式組成立時(shí),角為第三象限角.:根據(jù)三角函數(shù)的定義,終邊相同的角的同一三角函數(shù)值有和關(guān)系?顯然: : (其中),然后用計(jì)算器驗(yàn)證:(1)。 .思考:對(duì)于確定的角,這三個(gè)比值是否會(huì)隨點(diǎn)在的終邊上的位置的改變而改變呢?顯然,我們可以將點(diǎn)取在使線段的長(zhǎng)的特殊位置上,這樣就可以得到用直角坐標(biāo)系內(nèi)的點(diǎn)的坐標(biāo)表示銳角三角函數(shù):。數(shù),你能用直角坐標(biāo)系中角的終邊上點(diǎn)的坐標(biāo)來(lái)表示銳角三角函數(shù)嗎?如圖,設(shè)銳角的頂點(diǎn)與原點(diǎn)重合,始邊與軸的正半軸重合,那a的終邊P(x,y)Oxy,垂足為,則線段的長(zhǎng)度為,。 (2)。第一章 三角函數(shù)一、 教學(xué)目標(biāo):知識(shí)與技能(1)推廣角的概念、引入大于角和負(fù)角;(2)理解并掌握正角、負(fù)角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹立運(yùn)動(dòng)變化觀點(diǎn),深刻理解推廣后的角的概念;(6)揭示知識(shí)背景,引發(fā)學(xué)生學(xué)習(xí)興趣.(7)創(chuàng)設(shè)問(wèn)題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強(qiáng)化學(xué)生的參與意識(shí).過(guò)程與方法通過(guò)創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時(shí)針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負(fù)角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個(gè)終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí).情態(tài)與價(jià)值通過(guò)本節(jié)的學(xué)習(xí),使同學(xué)們對(duì)角的概念有了一個(gè)新的認(rèn)識(shí),即有正角、學(xué)會(huì)運(yùn)用運(yùn)動(dòng)變化的觀點(diǎn)認(rèn)識(shí)事物.二、教學(xué)重、難點(diǎn) 重點(diǎn): 理解正角、負(fù)角和零角的定義,掌握終邊相同角的表示法.難點(diǎn): 終邊相同的角的表示.三、學(xué)法與教學(xué)用具之前的學(xué)習(xí)使我們知道最大的角是周角,首先要弄清楚角的表示符號(hào),.教學(xué)用具:電腦、投影機(jī)、三角板四、教學(xué)設(shè)想 【創(chuàng)設(shè)情境】思考:你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?小時(shí),你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時(shí)間校準(zhǔn)以后,分針轉(zhuǎn)了多少度? [取出一個(gè)鐘表,實(shí)際操作]我們發(fā)現(xiàn),校正過(guò)程中分針需要正向或反向旋轉(zhuǎn),有時(shí)轉(zhuǎn)不到一周,有時(shí)轉(zhuǎn)一周以上,這就是說(shuō)角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角.【探究新知】1.初中時(shí),我們已學(xué)習(xí)了角的概念,它是如何定義的呢?[展示投影],一條射線由原來(lái)的位置,繞著它的端點(diǎn)按逆時(shí)針方向旋轉(zhuǎn)到終止位置,叫終邊,射線的端點(diǎn)叫做叫的頂點(diǎn). :“轉(zhuǎn)體” (即轉(zhuǎn)體2周),“轉(zhuǎn)體”(即轉(zhuǎn)體3周)等,:能否再舉出幾個(gè)現(xiàn)實(shí)生活中“大于的角或按不同方向旋轉(zhuǎn)而成的角”的例子,這些說(shuō)明了什么問(wèn)題?又該如何區(qū)分和表示這些角呢?[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時(shí)成不同的角, 這些都說(shuō)明了我們研究推廣角概念的必要性. 為了區(qū)別起見,我們規(guī)定:按逆時(shí)針方向旋轉(zhuǎn)所形成的角叫正角(positive angle),按順時(shí)針方向旋轉(zhuǎn)所形成的角叫負(fù)角(negative angle).如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個(gè)零角(zero angle).[展示課件](1)中的角是一個(gè)正角,它等于;(2)中,正角,負(fù)角;這樣,我們就把角的概念推廣到了任意角(any angle),包括正角、負(fù)角和零角. 為了簡(jiǎn)單起見,在不引起混淆的前提下,“角”或“”可簡(jiǎn)記為.,我們常在直角坐標(biāo)系內(nèi)討論角,為此我們必須了解象限角這個(gè)概念.角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合。那么,角的終邊(除端點(diǎn)外)在第幾象限,我們就說(shuō)這個(gè)角是第幾象限角(quadrant angle).、:如果角的終邊在坐標(biāo)軸上,就認(rèn)為這個(gè)角不屬于任何一個(gè)象限,稱為非象限角.4.[展示投影]練習(xí):(1)(口答)銳角是第幾象限角?第一象限角一定是銳角嗎?再分別就直角、鈍角來(lái)回答這兩個(gè)問(wèn)題
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1