【摘要】高一數學導學案編制人:審核人:必修4第二章第1課時向量概念及物理意義【學習目標】,理解向量的概念.2.理解零向量、單位向量、共線向量、相等向量等概念?!窘虒W重點】向量、零向量、單位向量、平行向量的概念.【教學難點】向量及相關概念的理解,零向量、單位向量、平行向量的判斷【教材
2025-04-23 12:24
【摘要】第4節(jié)平面向量的應用(對應學生用書第66頁)1.向量在平面幾何中的應用平面向量在平面幾何中的應用主要是用向量的線性運算和數量積解決平行、垂直、長度、夾角等問題.設a=(x1,y1),b=(x2,y2),①證明線線平行或點共線問題,主要利用共線向量定理,即a∥b?a=λb(b≠0)?x1y2-x
2024-11-19 06:00
【摘要】平面向量數量積的坐標表示四川省沐川中學劉少民平面向量數量積復習a和b,它們的夾角為θ,則a&
2024-11-17 05:07
【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內的兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內所
2024-11-17 04:47
【摘要】第三節(jié)平面向量的數量積及平面向量應用舉例解分析用數量積和模的定義以及運算性質,逐題計算.79642)(||)4(3427158||3120cos||||5||2352)3()2)(3(.594||||2.32132120cos||||12222o2222222o???????????
2024-11-19 09:01
【摘要】新課標人教版課件系列《高中數學》必修42.3.3《平面向量的坐標運算》教學目的?(1)理解平面向量的坐標的概念;?(2)掌握平面向量的坐標運算;?(3)會根據向量的坐標,判斷向量是否共線.?教學重點:平面向量的坐標運算?教學難點:向量的坐標表示的理解及運算的準確性.
【摘要】平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標運算平面向量的坐標表示1.平面向量基本定理的內容?什么叫基底?a=xi+yj.有且只有一對實數x、y,使得2.分別與x軸、y軸方向相同的兩單位向量i、j能否作
2024-11-17 09:20
【摘要】復數與平面向量的聯系請同學們考慮:1、有關復數的知識,我們學了什么?2、有關向量的知識,你還記得什么?(1)既有大小又有方向的量叫向量。向量可用有向線段來表示。(2)向量的模:向量的大小叫做向量的模。(3)相等的向量:模相等且方向相同的向量。(4)零向量:模
【摘要】1.設、、是單位向量,且·=0,則的最小值為(D)A. B. C.D.解析是單位向量.2.已知向量,則(C) A.B.C.D.解析,故選C.3.平面向量a與b的夾角為,,則(
2025-04-23 13:01
【摘要】必修4第二章平面向量教學質量檢測姓名:班級:學號:得分:(5分×12=60分):1.以下說法錯誤的是(?。〢.零向量與任一非零向量平行2.下列四式不能化簡為的是( ?。〢. B.C. D.3.已知=(3,4),=(
2025-06-30 19:26
【摘要】第1節(jié)平面向量的概念及線性運算(對應學生用書第59~60頁)1.向量的有關概念(1)向量:既有大小又有方向的量叫做向量,向量的大小叫做向量的長度(或稱模).(2)零向量:長度為0的向量叫做零向量,其方向是任意的.(3)單位向量:長度等于1個單位的向量.(4)平行向量:方向相同
【摘要】第二章平面向量向量的物理背景與概念向量的幾何表示問題提出t57301p2???????,位移與距離是同一個概念嗎?為什么?,如年齡、身高、體重、力、速度、面積、體積、溫度等,在數學上,為了正確理解、區(qū)分這些量,我們引進向量的概念.探究(一):向量的物理背景與概念思考1:在物理中,怎
2024-11-19 21:09
【摘要】第2節(jié)平面向量基本定理及其坐標表示(對應學生用書第61~62頁)1.向量的夾角(1)定義:已知兩個非零向量a和b,如圖,作OA―→=a,OB―→=b,則∠AOB=θ叫做向量a與b的夾角,也可記作〈a,b〉=θ.(2)范圍:向量夾角θ的范圍是[0,π],a與b同向時,夾角θ
2024-11-20 01:35
【摘要】1、平面向量的坐標表示與平面向量分解定理的關系。2、平面向量的坐標是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
【摘要】a和b,它們的夾角為θ,則a·b=abcos.a·b稱為向量a與b的數量積(或內積).θa·b等于a的長度a與b在a的方向上的投影bcos的乘積.θ6.a·b≤ab.3.a⊥
2024-11-18 08:35