【摘要】柯西不等式的證明及應(yīng)用(河西學(xué)院數(shù)學(xué)系01(2)班甘肅張掖734000)摘要:柯西不等式是一個非常重要的不等式,靈活巧妙的應(yīng)用它,可以使一些較為困難的問題迎刃而解。本文在證明不等式,解三角形相關(guān)問題,求函數(shù)最值,解方程等問題的應(yīng)用方面給出幾個例子。關(guān)鍵詞:柯西不等式證明應(yīng)用中圖分類號:O178
2025-06-29 14:21
【摘要】武勝中學(xué)高2009級培優(yōu)講座柯西不等式及應(yīng)用武勝中學(xué)周迎新柯西不等式:設(shè)a1,a2,…an,b1,b2…bn均是實數(shù),則有(a1b1+a2b2+…+anbn)2≤(a12+a22+…an2)(b12+b22+…bn2)等號當且僅當ai=λbi(λ為常數(shù),i=1,,…n)時取到。注:二維柯西不等式:(一)、柯西不等式的證明柯西不等式有多種證明方法,你能怎么嗎?
2025-06-29 14:32
【摘要】課時作業(yè)76 柯西不等式與排序不等式、數(shù)學(xué)歸納法證明不等式時間:45分鐘 分值:100分一、填空題(每小題5分,共45分)1.已知實數(shù)x、y、z滿足x+2y+3z=1,則x2+y2+z2的最小值為________.解析:由(x2+y2+z2)(12+22+32)≥(x+2y+3z)2=1可得,x2+y2+z2≥.答案:2.(2010·廣東東莞)若x+2
2024-08-31 17:02
【摘要】柯西不等式教學(xué)設(shè)計一、教學(xué)目標:1、知識目標:(1)認識二維柯西不等式的兩種形式:代數(shù)形式;向量形式。(2)學(xué)會二維柯西不等式的兩種證明方法:代數(shù)方法;向量方法。(3)了解一般形式的柯西不等式,并學(xué)會應(yīng)用及探究其證明過程。2、能力目標:(1)學(xué)會運用柯西不等式解決一些簡單問題。(2)學(xué)會運用柯西不等式證明不等式。(3)培養(yǎng)學(xué)生知識
2025-04-23 04:42
【摘要】I摘要柯西不等式是一個非常重要的公式,對于柯西不等式的深入了解對于我們解決一些問題有非常大的幫助。本文給出了柯西不等式的二維形式、三角形式、向量形式、一般形式、推廣形式、積分形式,對于柯西不等式的證明本文也給出了多種證明方法包括構(gòu)造二次函數(shù)法、數(shù)學(xué)歸納法、配方法、均值不等式法、向量法、行列式證明法、利用二次型法、利用線性相關(guān)性法,本文
2025-06-11 18:42
【摘要】Mathwang幾個經(jīng)典不等式的關(guān)系一幾個經(jīng)典不等式(1)均值不等式設(shè)是實數(shù),等號成立.(2)柯西不等式設(shè)是實數(shù),則當且僅當或存在實數(shù),使得時,等號成立.(3)排序不等式設(shè),為兩個數(shù)組,是的任一排列,則當且僅當或時,等號成立.(4)切比曉夫不等式對于兩個數(shù)組:,,有當且僅當或時,等號成立.二相關(guān)證明(1)用排
2025-04-23 08:24
【摘要】柯西不等式的應(yīng)用技巧324100浙江省江山中學(xué)楊作義(手機:13735055298;郵箱:yzy6118@)普通高中課程標準實驗教科書數(shù)學(xué)選修4—5《不等式選講》安排了“柯西不等式”的內(nèi)容,它是我省高考的選考內(nèi)容之一.柯西不等式的一般形式是:設(shè),則當且僅當或時等號成立.其結(jié)構(gòu)對稱,形式優(yōu)美,應(yīng)用極為廣泛,特別在證明不等式和求函數(shù)的最值中作用極大.應(yīng)用時往往
【摘要】柯西不等式?答案:及幾種變式.、b、c、d為實數(shù),求證證法:(比較法)=….=定理:若a、b、c、d為實數(shù),則.變式:或或.定理:設(shè),則(當且僅當時取等號,假設(shè))變式:.定理:設(shè)是兩個向量,則.等號成立?(是零向量,或者共線)練習(xí):已知a、b、c、d為實數(shù),求證.
2025-04-10 05:05
【摘要】基本不等式及應(yīng)用一、考綱要求:.2.會用基本不等式解決簡單的最大(小)值問題.3.了解證明不等式的基本方法——綜合法.二、基本不等式基本不等式不等式成立的條件等號成立的條件≤a0,b0a=b三、常用的幾個重要不等式(1)a2+b2≥2ab(a,b∈R)(2)ab≤()2(a,b∈R)(3)≥()2(a,
2025-04-22 22:38
【摘要】經(jīng)典例題透析類型一:利用柯西不等式求最值 1.求函數(shù)的最大值. 思路點撥:利用不等式解決最值問題,通常設(shè)法在不等式一邊得到一個常數(shù),并尋找不等式取等號的條件.這個函數(shù)的解析式是兩部分的和,若能化為ac+bd的形式就能利用柯西不等式求其最大值.也可以利用導(dǎo)數(shù)求解?! 〗馕觯骸 》ㄒ唬骸咔?, ∴函數(shù)的定義域為,且, 當且僅當時,等號
2025-03-31 04:42
【摘要】柯西不等式的證明及相關(guān)應(yīng)用摘要:柯西不等式是高中數(shù)學(xué)新課程的一個新增內(nèi)容,也是高中數(shù)學(xué)的一個重要知識點,它不僅歷史悠久,形式優(yōu)美,結(jié)構(gòu)巧妙,也是證明命題、研究最值問題的一個強有力的工具。關(guān)鍵詞:柯西不等式柯西不等式變形式最值一、柯西(Cauchy)不等式:等號當且僅當或時成立(k為常數(shù),)現(xiàn)將它的證明介紹如下:方法1
2025-04-15 01:52
【摘要】歸納柯西不等式的典型應(yīng)用【摘要】:柯西不等式是一個非常重要的不等式,本文用五種不同的方法證明了柯西不等式,介紹了如何利用柯西不等式技巧性解題,在證明不等式或等式,解方程,解三角形相關(guān)問題,求函數(shù)最值等問題的應(yīng)用方面給出幾個典型例子。最后用其證明了點到直線的距離公式,更好的解釋了柯西不等式?!娟P(guān)鍵詞】:柯西不等式;證明;應(yīng)用【引言】:本人通過老師在中教法課上學(xué)習(xí)柯
2025-07-01 17:25
【摘要】課時作業(yè)(三十九)絕對值不等式及柯西不等式(選修4-5)一、選擇題1.“|x-1|<2成立”是“x(x-3)<0成立”的( )A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件答案:B解析:|x-1|<2?-1<x<3,x(x-3)<0?0<x<3.則(0,3)(-1,3).故應(yīng)選B.2.設(shè)a,b為滿足ab<0的實
2025-08-11 15:29
【摘要】柯西不等式的初等證明及變形作者:張黎娜在客觀事物中,不等量關(guān)系是普遍的,等量關(guān)系是相對的,不等式更一般地反映了數(shù)量之間的關(guān)系和規(guī)律,,不等式在中學(xué)數(shù)學(xué)中具有重要地位和廣泛應(yīng)用,,不等式相關(guān)問題也就成了歷年高考數(shù)學(xué)的考查重點,突出考查學(xué)生聯(lián)系與轉(zhuǎn)化,分類討論,數(shù)形結(jié)合等重要的數(shù)學(xué)思想方法和邏輯思維,數(shù)學(xué)應(yīng)用等
2024-09-05 05:32
【摘要】第三講柯西不等式與排序不等式一二維形式的柯西不等式若a,b,c,d都是實數(shù),則(a2+b2)(c2+d2)≥(ac+bd)2當且僅當ad=bc時,等號成立.定理1(二維形式的柯西不等式):你能證明嗎?推論22222222||abcdacbdabc
2025-07-29 10:08