【摘要】立體幾何中的探索性問(wèn)題立體幾何中的探索性問(wèn)題主要是對(duì)平行、垂直關(guān)系的探究,對(duì)條件和結(jié)論不完備的開(kāi)放性問(wèn)題的探究.這類試題的一般設(shè)問(wèn)方式是“是否存在?存在給出證明,不存在說(shuō)明理由”.解決這類試題,一般根據(jù)探索性問(wèn)題的設(shè)問(wèn),首先假設(shè)其存在,然后在這個(gè)假設(shè)下進(jìn)行推理論證,如果通過(guò)推理得到了合乎情理的結(jié)論就肯定假設(shè),如果得到了矛盾就否定假設(shè).8如圖,
2025-03-31 06:43
【摘要】空間向量在立體幾何探索性問(wèn)題中的應(yīng)用——福建晉江養(yǎng)正中學(xué)林巧紅摘要:“空間向量與立體幾何”這一章是數(shù)學(xué)必修4“平面向量”在空間的推廣,又是數(shù)學(xué)必修2“立體幾何初步”的延續(xù),空間向量的引入,為解決三維空間中圖形的位置關(guān)系與度量問(wèn)題提供了一個(gè)十分有效的工具。關(guān)鍵詞:空間向量,立體幾何,平行垂直,角,距離,探索性問(wèn)題立體幾何中,平行、垂直、距離和角的問(wèn)題是主要問(wèn)題,而以它們?yōu)楸尘暗?/span>
2025-07-29 04:44
【摘要】專題 圓錐曲線中的探索性問(wèn)題1.(2016·課標(biāo)全國(guó)乙)在直角坐標(biāo)系xOy中,直線l:y=t(t≠0)交y軸于點(diǎn)M,交拋物線C:y2=2px(p0)于點(diǎn)P,M關(guān)于點(diǎn)P的對(duì)稱點(diǎn)為N,連接ON并延長(zhǎng)交C于點(diǎn)H.(1)求;(2)除H以外,直線MH與C是否有其他公共點(diǎn)?說(shuō)明理由.2.(2016·四川)已知橢圓E:+=1(ab&g
2025-07-31 00:14
【摘要】(一):引言:上課時(shí)學(xué)習(xí)了探索型問(wèn)題(一),即條件探索與結(jié)論探索,解決這類問(wèn)題常用的方法是:(1)特殊值代入法,(2)反演推理法,(3)類討論法,(4)類比猜想法。本課時(shí)學(xué)習(xí)存在型探索與規(guī)律型探索(二)學(xué)習(xí)目標(biāo)
2024-11-14 21:41
【摘要】立體幾何空間直線解答題空間直線解答題1、在空間四邊形ABCD中,各邊長(zhǎng)和對(duì)角線長(zhǎng)均為a,點(diǎn)E、F分別是BD、AC的中點(diǎn),求異面直線AE和BF所成的角.2、如圖,空間四邊形ABCD中,AB=AD=2,BC=DC=1,AD和
2024-11-19 13:18
【摘要】2009高考數(shù)學(xué)解答題專題攻略----立體幾何09高考立體幾何分析與預(yù)測(cè):立體幾何是高中數(shù)學(xué)中的重要內(nèi)容,也是高考的熱點(diǎn)內(nèi)容。該部分新增加了三視圖,對(duì)三視圖的考查應(yīng)引起格外的注意。立體幾何在高考解答題中,常以空間幾何體(柱,錐,臺(tái))為背景,考查幾何元素之間的位置關(guān)系。另外還應(yīng)注意非標(biāo)準(zhǔn)圖形的識(shí)別、三視圖的運(yùn)用、圖形的翻折、求體積時(shí)的割補(bǔ)思想等,以及把運(yùn)動(dòng)的思想引進(jìn)立體幾何。最近幾年綜合分
2025-01-21 10:22
【摘要】課時(shí)目標(biāo):1、了解空間動(dòng)點(diǎn)集合的類型2、探索“動(dòng)點(diǎn)問(wèn)題”的解題思路問(wèn)題一:動(dòng)點(diǎn)P滿足如下條件時(shí)圓橢圓雙曲線拋物線直線球面平面內(nèi)到定點(diǎn)距離等于定長(zhǎng)平面內(nèi)到兩定點(diǎn)距離之和為定值(大于定點(diǎn)間的距離)平面內(nèi)到兩定點(diǎn)距離之差的絕對(duì)值為定值(小于定點(diǎn)間的距離)
2025-08-11 10:16
【摘要】立體幾何中的軌跡問(wèn)題高考數(shù)學(xué)有一類學(xué)科內(nèi)的綜合題,它們的新穎性、綜合性,值得我們重視,在知識(shí)網(wǎng)絡(luò)交匯點(diǎn)處設(shè)計(jì)試題是高考命題改革的一個(gè)方向,以空間問(wèn)題為為背景的軌跡問(wèn)題作為解析幾何與立體幾何的交匯點(diǎn),由于知識(shí)點(diǎn)多,數(shù)學(xué)思想和方法考查充分,求解比較困難。通常要求學(xué)生有較強(qiáng)的空間想象能力,以及能夠把空間問(wèn)題轉(zhuǎn)化到平面上,再結(jié)合解析幾何方法求解,以下精選幾個(gè)問(wèn)題來(lái)對(duì)這一問(wèn)題進(jìn)行探討,旨在探索題型規(guī)律
2024-10-08 16:57
【摘要】高一立體幾何平行、垂直解答題精選1.已知直三棱柱ABC-A1B1C1,點(diǎn)N在AC上且CN=3AN,點(diǎn)M,P,Q分別是AA1,A1B1,:直線PQ∥平面BMN.2.如圖,在正方形ABCD-A1B1C1D1中,E,F(xiàn),M分別是棱B1C1,BB1,C1D1的中點(diǎn),是否存在過(guò)點(diǎn)E,M且與平面A1FC平行的平面?若存在,請(qǐng)作出并證明;若不存在,請(qǐng)說(shuō)明理由
2025-04-01 05:39
【摘要】立體幾何解答題的常見(jiàn)題型及解題策略山東省臨沭縣第二中學(xué)(276700)劉康平立體幾何作為考查學(xué)生的空間想象能力與數(shù)學(xué)基礎(chǔ)知識(shí)的綜合能力的手?jǐn)?,每年都?huì)有一個(gè)解答題,主要是以多面體為載體,考查空間線面關(guān)系、空間角的求法以及距離的計(jì)算,所以出題重心就落在這三方面,此外,探索型問(wèn)題也是立體幾何中的常見(jiàn)題型,在知識(shí)點(diǎn)的交匯處出題也是高考命題的熱點(diǎn)?;绢}型在立體幾何的常見(jiàn)題型中,最基本
2024-10-08 15:52
【摘要】三視圖問(wèn)題分類解答例1、概念問(wèn)題1、下列幾何體各自的三視圖中,有且僅有兩個(gè)視圖相同的是.(填序號(hào))2、如圖,折線表示嵌在玻璃正方體內(nèi)的一根鐵絲,請(qǐng)把它的三視圖補(bǔ)充完整.3、已知某個(gè)幾何體的三視圖如下圖所示,試根據(jù)圖中所標(biāo)出的尺寸(單位:㎝),可得這個(gè)幾何體的體積是.4、已知某個(gè)幾何體的三視圖如下圖所示,試根據(jù)圖中
2025-06-13 21:09
【摘要】空間向量與立體幾何解答題精選1已知四棱錐的底面為直角梯形,,底面,且,,是的中點(diǎn)(Ⅰ)證明:面面;(Ⅱ)求與所成的角;(Ⅲ)求面與面所成二面角的大小證明:以為坐標(biāo)原點(diǎn)長(zhǎng)為單位長(zhǎng)度,如圖建立空間直角坐標(biāo)系,則各點(diǎn)坐標(biāo)為(Ⅰ)證明:因由題設(shè)知,且與是平面內(nèi)的兩條相交直線,由此得面又在面上,故面⊥面(Ⅱ)解:因(Ⅲ)解:在上取一點(diǎn)
2025-06-29 04:04
【摘要】《立體幾何》解答題1.(2008年江蘇卷)如圖,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F分別是AB,BD的中點(diǎn).求證:(Ⅰ)直線EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.2.(2009年江蘇卷)如圖,在直三棱柱ABC-A1B1C1中,E、F分別是A1B、A1C的中點(diǎn),點(diǎn)D在B1C1上,A1D⊥B1C求證:(Ⅰ)EF∥平面ABC;
2025-08-11 08:12
【摘要】立體幾何中的翻折問(wèn)題連州中學(xué)周騰達(dá)圖形的展開(kāi)與翻折問(wèn)題就是一個(gè)由抽象到直觀,由直觀到抽象的過(guò)程.在歷年高考中以圖形的展開(kāi)與折疊作為命題對(duì)象時(shí)常出現(xiàn),因此,關(guān)注圖形的展開(kāi)與折疊問(wèn)題是非常必要的.折疊問(wèn)題2020年高考的熱點(diǎn),預(yù)測(cè)明年高考也應(yīng)是一個(gè)熱點(diǎn).把一個(gè)平面圖形按某種要求折
2024-11-17 05:40
【摘要】Doc521資料分享網(wǎng)()–資料分享我做主!數(shù)學(xué)高考綜合能力題選講29《條件開(kāi)放的探索性問(wèn)題》100080北京中國(guó)人民大學(xué)附中梁麗平題型預(yù)測(cè)探索性問(wèn)題的明顯特征是問(wèn)題本身具有開(kāi)放性及問(wèn)題解決的過(guò)程中帶有較強(qiáng)的探索性.對(duì)于條件開(kāi)放的探索性問(wèn)題,往往采用分析法,從結(jié)論和部分已知的條件入手,執(zhí)果索因,導(dǎo)出所需的條件.另外,需要注意的是,這一
2025-04-23 13:17