【摘要】二次函數(shù)1.最大利潤與二次函數(shù)?頂點式,對稱軸和頂點坐標(biāo)公式:?利潤=售價-進價.駛向勝利的彼岸回味無窮二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)??????????abacab44,22.44222abacabxay??????
2024-11-27 02:01
【摘要】二次函數(shù)面積最大問題姓名:1、如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個交點為B(5,0),另一個交點為A,且與y軸交于點C(0,5).(1)求直線BC與拋物線的解析式;(2)若點M是拋物線在x軸下方圖象上的一動點,過點M作MN∥y軸交直線BC于點N,求MN的最大值;(3)求三角形CBM的最大值2、如圖,對稱軸
2025-03-30 06:28
【摘要】利潤最大問題利潤問題一.幾個量之間的關(guān)系.、售價、進價的關(guān)系:利潤=售價-進價、單價、數(shù)量的關(guān)系:總價=單價×數(shù)量、單件利潤、數(shù)量的關(guān)系:總利潤=單件利潤×數(shù)量二.在商品銷售中,采用哪些方法增加利潤?問題40元,售價是每件60元,每星期可賣出300件。
2025-05-05 06:14
【摘要】二次函數(shù)應(yīng)用題利潤問題例1、商場促銷,將每件進價為80元的服裝按原價100元出售,一天可售出140件,后經(jīng)市場調(diào)查發(fā)現(xiàn),該服裝的單價每降低1元,其銷量可增加10件現(xiàn)設(shè)一天的銷售利潤為y元,降價x元。(1)求按原價出售一天可得多少利潤?(2)求銷售利潤y與降價x的的關(guān)系式(3)商場要使每天利潤為2850元并且使得玩家得到實惠,應(yīng)該降價多少元?(4)要使利潤最大,則需降價多少
2025-03-30 06:26
【摘要】初四數(shù)學(xué)二次函數(shù)中的最大面積專題練習(xí)題1.如圖,在直角坐標(biāo)系中有一直角三角形AOB,O為坐標(biāo)原點,OA=1,tan∠BAO=3,將此三角形繞原點O逆時針旋轉(zhuǎn)90°,得到△DOC.拋物線y=ax2+bx+c經(jīng)過點A、B、C.(1)求拋物線的解析式.(2)若點P是第二象限內(nèi)拋物線上的動點,其橫坐標(biāo)為t.①設(shè)拋物線對稱軸l與x軸交于一點E,連接P
2025-03-30 06:27
【摘要】第二十二章二次函數(shù)知識管理學(xué)習(xí)指南歸類探究當(dāng)堂測評分層作業(yè)實際問題與二次函數(shù)第2課時二次函數(shù)與最大利潤問題學(xué)習(xí)指南★教學(xué)目標(biāo)★通過對問題情境的分析確定二次函數(shù)的解析式,并體會二次函數(shù)的意義,能根據(jù)變量的變化趨勢進行
2025-06-22 13:55
【摘要】二次函數(shù)1.最大利潤與二次函數(shù)陽泉市義井中學(xué)高鐵牛?頂點式,對稱軸和頂點坐標(biāo)公式:?利潤=售價-進價.駛向勝利的彼岸回味無窮二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)想一想P352?總利潤=每件利潤×銷售數(shù)量.何時橙子總產(chǎn)量最大?100棵橙子樹,每一棵樹
2024-11-14 21:30
2025-06-23 13:44
【摘要】第二十二章二次函數(shù)實際問題與二次函數(shù)第二十二章二次函數(shù)第2課時二次函數(shù)與最大利益問題第2課時二次函數(shù)與最大利益問題探究新知活動1知識準(zhǔn)備1.二次函數(shù)y=2x2-8x+1的圖象的頂點坐標(biāo)是________,當(dāng)x=________時,y的最小值為____
2025-06-23 13:48
【摘要】第二十二章二次函數(shù)第2課時二次函數(shù)與最大利潤問題學(xué)習(xí)指南知識管理歸類探究分層作業(yè)當(dāng)堂測評學(xué)習(xí)指南教學(xué)目標(biāo)通過對問題情境的分析確定二次函數(shù)的解析式,并體會二次函數(shù)的意義,能根據(jù)變量的變化趨勢進行預(yù)
2025-06-22 02:55
【摘要】第二十二章二次函數(shù)實際問題與二次函數(shù)總結(jié)反思目標(biāo)突破第二十二章二次函數(shù)知識目標(biāo)第2課時二次函數(shù)與最大利益問題知識目標(biāo)第2課時二次函數(shù)與最大利益問題通過建立二次函數(shù)模型,利用二次函數(shù)的性質(zhì)解決實際問題中的最大利潤、最低費用等問題.目標(biāo)突破目標(biāo)會利用二次函數(shù)解決最大利潤、
2025-04-10 04:24
【摘要】第2課時二次函數(shù)與最大利潤問題
2025-06-18 12:37
【摘要】4二次函數(shù)的應(yīng)用第二章二次函數(shù)課堂達標(biāo)素養(yǎng)提升第二章二次函數(shù)第2課時最大利潤問題課堂達標(biāo)一、選擇題第2課時最大利潤問題1.若一種服裝的銷售利潤y(萬元)與銷售數(shù)量x(萬件)之間滿足函數(shù)表達式y(tǒng)=-2x2+4x+5,則盈利的最值情況為()A.有最
2025-06-26 16:00
【摘要】第一篇:二次函數(shù)利潤應(yīng)用教學(xué)設(shè)計 二次函數(shù)與實際問題 利潤的最大化問題——教學(xué)設(shè)計 教學(xué)目標(biāo): 1、探究實際問題與二次函數(shù)的關(guān)系 2、讓學(xué)生掌握用二次函數(shù)最值的性質(zhì)解決最大值問題的方法 3...
2024-10-21 21:01