【摘要】平面幾何知識點匯總(一)知識點一相交線和平行線對頂角的性質(zhì):對頂角相等。:性質(zhì)1:過一點有且只有一條直線與已知直線垂直。性質(zhì)2:連接直線外一點與直線上各點的所有線段中,垂線段最短。:經(jīng)過直線外一點有且只有一條直線與已知直線平行。平行公理的推論:如果兩條直線都與第三條直線平行,那么這兩條直線也互相平行。:性質(zhì)1:兩直線平行,同位角相等。性質(zhì)2:兩直線平
2025-06-24 06:09
2025-06-24 07:29
【摘要】課堂練習(xí)題一、相信你的選擇1.如圖所示,在□ABCD中,對角線AC、BD交于點O,下列式子中一定成立的是().A.AC⊥BDB.OA=OCC.AC=BDD.A0=OD2.如圖,平行四邊形ABCD中,AB=3,BC=5,AC的垂垂直平分線交AD于E,則△CDE的周長是().A.6B.8C.
2024-08-18 03:04
【摘要】1、平面圖形的分類及概念2、類別概念圖示線直線:沒有端點、它是無限長的。線段:有兩個端點、它的長度是有限的。射線:有一個端點,它的長度是無限的?;【€:圓上A、B兩點間的部分叫做弧。角(由一點引出的兩條射線所圍成的圖形)銳角:大于0°,小于90°的角。鈍角:大于90°,小于180
2025-03-30 03:16
【摘要】1.直線的傾斜角與斜率:(1)直線的傾斜角:在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點按逆時針方向旋轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為叫做直線的傾斜角.傾斜角,斜率不存在.(2)直線的斜率:.(、).2.直線方程的五種形式:(1)點斜式:(直線過點,且斜率為).注:當(dāng)直線斜率不存在時,不能用點斜式表示,此時方程為.(2)斜截式:(b
2025-06-28 16:55
【摘要】初中數(shù)學(xué)平面幾何知識定理1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩
2025-06-13 16:31
【摘要】平面解析幾何知識點歸納◆知識點歸納直線與方程1.直線的傾斜角規(guī)定:當(dāng)直線與軸平行或重合時,它的傾斜角為范圍:直線的傾斜角的取值范圍為:,斜率公式:經(jīng)過兩點,的直線的斜率公式為3.直線方程的幾種形式名稱方程說明適用條件斜截式是斜率是縱截距與軸不垂直的直線點斜式是直線上的已知點兩點式是直線上的兩個
【摘要】平面幾何定理公理總結(jié)一、線與角1.兩點之間,線段最短。線段的長叫兩點間的距離。直線外一點到直線,垂線段最短,垂線段的長叫該點到直線的距離。一組平行線中,一條直線上一點到另一條直線的距離,叫兩條平行線間的距離。2.經(jīng)過兩點有且只有一條直線,即兩點確定一條直線。不在同一直線上的三點確定一個角。3.兩直線相交,對頂角相等。4.同角(或等角)的余角相等;同角(或
2025-06-23 01:36
【摘要】平面幾何習(xí)題大全下面的平面幾何習(xí)題均是我兩年來收集的,屬競賽范圍。共分為五種類型,1,幾何計算;2,幾何證明;3,共點線與共線點;4,幾何不等式;5,經(jīng)典幾何。幾何計算-1命題設(shè)點D是Rt△ABC斜邊AB上的一點,DE⊥BC于點E,DF⊥AC于點F。若AF=15,BE=10,則四邊形DECF的面積是多少?解:設(shè)DF=CE=x,DE=CF=y.∵Rt△BED∽Rt△D
2025-03-31 01:21
【摘要】經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.AFGCEBOD2、已知:如圖,P是正方形ABCD內(nèi)一點,∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.D2C2
【摘要】一、選擇題1.(重慶市2002年4分)一居民小區(qū)有一正多邊形的活動場。為迎接“AAPP”會議在重慶的召開,小區(qū)管委會決定在這個多邊形的每個頂點處修建一個半徑為2m的扇形花臺,花臺都以多邊形的頂點為圓心,以多邊形的內(nèi)角為圓心角,花臺占地面積共為12。若每個花臺的造價為400元,則建造這些花臺共需資金【】A2400元B2800元C3200元
2025-07-01 05:50
【摘要】01凸四邊形ABCD的對角線交于點M,點P、Q分別是△AMD和△CMB重心,R、S分別是△DMC和△MAB的垂心.求證PQ⊥RS.證:過A、C分別作BD的平行線,過B、D分別作AC的平行線.這四條直線分別相交于X、W、Y、Z.則四邊形XWYZ為平行四邊形,且XW∥AC∥XZ.則四邊形XAMD、MBYC皆為平行四邊
【摘要】海豚教育個性化簡案學(xué)生姓名:年級:科目:授課日期:月日上課時間:時分------時分合計:小時教學(xué)目標(biāo)1.掌握兩條直線平行和垂直的條件,掌握兩條直線所成的角和點到直線的距離公式;2.能夠根據(jù)直線的方程
【摘要】??初中平面幾何概念??????1過兩點有且只有一條直線??????2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直
2024-10-08 14:56
【摘要】(高中)平面幾何基礎(chǔ)知識(基本定理、基本性質(zhì))1.勾股定理(畢達(dá)哥拉斯定理)(廣義勾股定理)(1)銳角對邊的平方,等于其他兩邊之平方和,減去這兩邊中的一邊和另一邊在這邊上的射影乘積的兩倍. (2)鈍角對邊的平方等于其他兩邊的平方和,加上這兩邊中的一邊與另一邊在這邊上的射影乘積的兩倍.2.射影定理(歐幾里得定理)3.中線定理(巴布斯定理)設(shè)△ABC的邊BC的中點為P,則有;中
2025-06-22 21:17