【摘要】復(fù)數(shù)的幾何意義⑵一、復(fù)習(xí)回顧:復(fù)平面復(fù)數(shù)z=a+bi有序?qū)崝?shù)對(a,b)直角坐標(biāo)系中的點(diǎn)Z(a,b)xyobaZ(a,b)建立了平面直角坐標(biāo)系來表示復(fù)數(shù)的平面x軸------實(shí)軸y軸------虛軸(數(shù))(形)------復(fù)數(shù)平面
2024-11-25 18:06
【摘要】數(shù)系的擴(kuò)充和復(fù)數(shù)的概念復(fù)數(shù)的幾何意義i的基本特征是什么?(1)i2=-1;(2)i可以與實(shí)數(shù)進(jìn)行四則運(yùn)算,且原有的加、乘運(yùn)算律仍然成立.復(fù)習(xí)鞏固虛數(shù)單位i的引入解決了負(fù)數(shù)不能開平方的矛盾,并將實(shí)數(shù)集擴(kuò)充到了復(fù)數(shù)集。?復(fù)數(shù)相等的充要條件是什么?a+bi(a,b∈R
2025-08-11 05:02
【摘要】復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點(diǎn)Z(a,b)xyobaZ(a,b)建立了平面直角坐標(biāo)系來表示復(fù)數(shù)的平面x軸實(shí)軸y軸虛軸(數(shù))(形)復(fù)數(shù)平面(簡稱復(fù)平面)一一對應(yīng)z=a+bi復(fù)數(shù)的幾何意義(一)復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點(diǎn)
2025-07-29 06:04
【摘要】復(fù)數(shù)的幾何意義⑴一、問題引入:我們知道實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示。x01一一對應(yīng)注:規(guī)定了正方向,原點(diǎn),單位長度的直線叫做數(shù)軸.實(shí)數(shù)數(shù)軸上的點(diǎn)(形)(數(shù))實(shí)數(shù)的幾何模型:類比實(shí)數(shù)的表示,可以用什么來表示復(fù)數(shù)?想一想?回憶…復(fù)數(shù)的一般形式?
2024-11-25 11:00
【摘要】復(fù)數(shù)的幾何意義在幾何上,我們用什么來表示實(shí)數(shù)?想一想?實(shí)數(shù)的幾何意義類比實(shí)數(shù)的表示,在幾何上可以用什么來表示復(fù)數(shù)?實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示。實(shí)數(shù)數(shù)軸上的點(diǎn)(形)(數(shù))一一對應(yīng)回憶…復(fù)數(shù)的一般形式?Z=a+bi(a,b∈R)實(shí)
2024-08-28 22:03
【摘要】復(fù)數(shù)的幾何意義實(shí)數(shù)的幾何意義?新課導(dǎo)入在幾何上,我們用什么來表示實(shí)數(shù)?實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示.數(shù)軸上的點(diǎn)實(shí)數(shù)(數(shù))一一對應(yīng)(形)Z=a+bi(a,b∈R)實(shí)部虛部一個復(fù)數(shù)由什么確定?你能否找到用來表示
2025-08-01 05:14
【摘要】J金川公司一中金玉銀復(fù)數(shù)幾何意義的應(yīng)用?|z+c|+|z-c|=2a??RcRa???,?乘法的幾何意義將向量逆時針方向旋轉(zhuǎn)θ(θ>0),并且模變?yōu)樵瓉淼腶倍得向量,則對應(yīng)的復(fù)數(shù)與對應(yīng)的復(fù)數(shù)的關(guān)系是_
2025-08-10 16:29
【摘要】J金川公司一中金玉銀復(fù)數(shù)幾何意義的應(yīng)用?|z+c|+|z-c|=2a?乘法的幾何意義將向量逆時針方向旋轉(zhuǎn)θ(θ>0),并且模變?yōu)樵瓉淼腶倍得向量,則對應(yīng)的復(fù)數(shù)與對應(yīng)的復(fù)數(shù)的關(guān)系是_______?已知:集
2024-11-14 23:15
【摘要】1復(fù)數(shù)的乘法與除法2一、復(fù)數(shù)的乘法法則:(a+bi)(c+di)=ac+bci+adi+bdi2=(ac-bd)+(bc+ad)i顯然任意兩個復(fù)數(shù)的積仍是一個復(fù)數(shù).對于任意z1,z2,z3∈C,有z1?z2=z2?z1,z1?z2?z3=z1?(z2?z3),z
2024-11-09 19:27
【摘要】復(fù)數(shù)代數(shù)形式的四則運(yùn)算復(fù)數(shù)代數(shù)形式的加減運(yùn)算及其幾何意義我們引入這樣一個數(shù)i,把i叫做虛數(shù)單位,并且規(guī)定:i2??1;形如a+bi(a,b∈R)的數(shù)叫做復(fù)數(shù).全體復(fù)數(shù)所形成的集合叫做復(fù)數(shù)集,一般用字母C表示.知識回顧對虛數(shù)單位i的規(guī)定練習(xí).根據(jù)對虛數(shù)單位
2024-11-27 13:11
【摘要】郭秀剛問題1:已知復(fù)數(shù)Z1、Z在復(fù)平面上的對應(yīng)分別為A、B,O為原點(diǎn),∠AOB=π/6,若Z1=1+2i,求Z。XYOAB問題2:將問題1中向量OA平移,使O移至Q(1,1),A移至P(2,3),再繞Q點(diǎn)逆時針方向旋轉(zhuǎn)π/6得向量QB,求點(diǎn)B對應(yīng)的復(fù)數(shù)。XYAPQ
2024-11-25 05:27
【摘要】Z=a+bi(a,b∈R)實(shí)部!虛部!復(fù)數(shù)的代數(shù)形式:一個復(fù)數(shù)由有序?qū)崝?shù)對(a,b)確定實(shí)數(shù)可以用數(shù)軸上的點(diǎn)來表示。實(shí)數(shù)數(shù)軸上的點(diǎn)一一對應(yīng)(數(shù))(形)類比實(shí)數(shù)的表示,可以用直角坐標(biāo)系中的點(diǎn)的點(diǎn)來表示復(fù)數(shù)一.復(fù)平面復(fù)數(shù)z=a+bi直角坐標(biāo)系中的點(diǎn)Z(a
2024-11-20 17:13
【摘要】§復(fù)習(xí)檢測5分鐘之內(nèi)完成下列兩題:(1)(2+i)(4+3i);(2)化復(fù)數(shù)為代數(shù)形式和三解形式.1111222212(cossin)(cossin),?zrizrizz?????????設(shè),則通過計算你發(fā)現(xiàn)了什么問
2025-07-31 14:18
【摘要】?復(fù)數(shù)乘除法的幾何意義的應(yīng)用問題1:已知復(fù)數(shù)Z1、Z在復(fù)平面上的對應(yīng)分別為A、B,O為原點(diǎn),∠AOB=π/6,若Z1=1+2i,求Z。XYOAB問題2:將問題1中向量OA平移,使O移至Q(1,1),A移至P(2,3),再繞Q點(diǎn)逆時針方向旋轉(zhuǎn)π/6得向量QB,求點(diǎn)B對應(yīng)的復(fù)數(shù)。
【摘要】經(jīng)全國中小學(xué)教材審定委員會2021年審查通過良鄉(xiāng)中學(xué)數(shù)學(xué)組任寶泉第三冊(選修II)高中數(shù)學(xué)選修第三章導(dǎo)數(shù)2021年12月1日書山有路勤為徑,學(xué)海無崖苦作舟少小不
2025-01-10 02:20