【摘要】直線與圓錐曲線的位置關(guān)系安吉高級(jí)中學(xué)張國旗【教學(xué)要求】.,能夠應(yīng)用直線與圓錐曲線的位置關(guān)系解決一些實(shí)際問題.【典型例題】例1.已知直線l過拋物線)0(22??ppxy)的焦點(diǎn)F,并且與拋物線交于),(),,(2211yxByxA兩點(diǎn),證明:(1)焦點(diǎn)弦公式AB=pxx??21;(2)
2024-12-05 21:39
【摘要】1、直線和圓錐曲線位置關(guān)系(1)位置關(guān)系判斷:△法(△適用對(duì)象是二次方程,二次項(xiàng)系數(shù)不為0)。其中直線和曲線只有一個(gè)公共點(diǎn),包括直線和雙曲線相切及直線與雙曲線漸近線平行兩種情形;后一種情形下,消元后關(guān)于x或y方程的二次項(xiàng)系數(shù)為0。直線和拋物線只有一個(gè)公共點(diǎn)包括直線和拋物線相切及直線與拋物線對(duì)稱軸平行等兩種情況;后一種情形下,消元后關(guān)于x或y方程的二次項(xiàng)系數(shù)為0。(2)直線和
2025-07-28 17:02
【摘要】直線和圓錐曲線經(jīng)常考查的一些題型題型五:共線向量問題解析幾何中的向量共線,就是將向量問題轉(zhuǎn)化為同類坐標(biāo)的比例問題,再通過未達(dá)定理------同類坐標(biāo)變換,將問題解決。此類問題不難解決。例題7、設(shè)過點(diǎn)D(0,3)的直線交曲線M:于P、Q兩點(diǎn),且,求實(shí)數(shù)的取值范圍。分析:由可以得到,將P(x1,y1),Q(x2,y2),代人曲線方程,解出點(diǎn)的坐標(biāo),用表示出來。解:設(shè)P(x1,
2025-07-28 16:58
【摘要】直線和圓錐曲線經(jīng)常考查的一些題型直線與橢圓、雙曲線、拋物線中每一個(gè)曲線的位置關(guān)系都有相交、相切、相離三種情況,從幾何角度可分為三類:無公共點(diǎn),僅有一個(gè)公共點(diǎn)及有兩個(gè)相異公共點(diǎn)對(duì)于拋物線來說,平行于對(duì)稱軸的直線與拋物線相交于一點(diǎn),但并不是相切;對(duì)于雙曲線來說,平行于漸近線的直線與雙曲線只有一個(gè)交點(diǎn),但并不相切.直線和橢圓、雙曲線、拋物線中每一個(gè)曲線的公共點(diǎn)問題,可以轉(zhuǎn)化為它們的方程所
2025-07-28 16:59
【摘要】平面內(nèi)到兩定點(diǎn)F1、F2距離之和為常數(shù)2a(①)的點(diǎn)的軌跡叫橢圓.有|PF1|+|PF2|=2a.在定義中,當(dāng)②時(shí),表示線段F1F2;當(dāng)③時(shí),不表示任何圖形.2a>|F1F2|2a=|F1F2|2a<
2024-08-22 15:25
【摘要】直線與圓錐曲線的位置關(guān)系焦半徑公式02xpAF??01exaAF??02exaAF??橢圓雙曲線aexAF??01拋物線02xpAF??02ypAF??02ypAF??特別地,拋物線的焦點(diǎn)弦長為21xxpAB???)(21xxpAB???21yypAB???)(
2024-08-18 18:28
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識(shí):1、求曲線(或直線)方程的思考方向大體有兩種,一個(gè)方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長,半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個(gè)方向是
2025-07-31 00:15
【摘要】WORD資料可編輯直線圓錐曲線與向量的綜合問題高考考什么知識(shí)要點(diǎn):1.直線與圓錐曲線的公共點(diǎn)的情況(1)沒有公共點(diǎn)方程組無解(2)一個(gè)公共點(diǎn)(3)兩個(gè)公共點(diǎn)2.連結(jié)圓錐曲線上兩個(gè)點(diǎn)的線段稱為圓錐曲線的弦,要能熟練地利用方程的根
2025-03-31 06:30
【摘要】WORD資料可編輯直線圓錐曲線有關(guān)向量的問題高考考什么知識(shí)要點(diǎn):1.直線與圓錐曲線的公共點(diǎn)的情況(1)沒有公共點(diǎn)方程組無解(2)一個(gè)公共點(diǎn)(3)兩個(gè)公共點(diǎn)2.連結(jié)圓錐曲線上兩個(gè)點(diǎn)的線段稱為圓錐曲線的弦,要能熟練地利用方程的根與
2025-03-31 06:29
【摘要】直線與圓錐曲線的位置關(guān)系一.基本方法:1.直線與圓錐曲線的位置關(guān)系可以通過對(duì)直線方程與圓錐曲線方程組成的二元二次方程組的解的情況的討論來研究。即方程消元后得到一個(gè)一元二次方程,利用判別式⊿來討論(注⊿≠0時(shí),未必只有二個(gè)交點(diǎn))。2.直線與圓錐曲線的位置關(guān)系,還可以利用數(shù)形結(jié)合、以形助數(shù)的方法來解并決。3.如果直線的斜率為
2024-11-18 08:33
【摘要】第二章圓錐曲線與方程第14課時(shí)圓錐曲線的共同性質(zhì)教學(xué)目標(biāo):;.教學(xué)重點(diǎn):圓錐曲線的統(tǒng)一定義教學(xué)難點(diǎn):圓錐曲線的準(zhǔn)線方程教學(xué)過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學(xué)圓錐曲線的統(tǒng)一定義:Ⅲ.數(shù)學(xué)應(yīng)用例1:點(diǎn)M與一定點(diǎn)F(c,0)的距
2024-11-27 17:31
【摘要】考點(diǎn)41直線與圓錐曲線的位置關(guān)系一、直線與圓錐曲線的位置關(guān)系1.曲線的交點(diǎn)在平面直角坐標(biāo)系xOy中,給定兩條曲線,已知它們的方程為,求曲線的交點(diǎn)坐標(biāo),即求方程組的實(shí)數(shù)解.方程組有幾組實(shí)數(shù)解,,則這兩條曲線沒有交點(diǎn).2.直線與圓錐曲線的交點(diǎn)個(gè)數(shù)的判定設(shè)直線,圓錐曲線,把二者方程聯(lián)立得到方程組,消去得到一個(gè)關(guān)于的方程.(1)當(dāng)時(shí),方程有兩個(gè)不同的實(shí)數(shù)解,即直線與圓
2025-07-31 06:38
【摘要】直線和圓錐曲線??糹an錐曲線經(jīng)