【摘要】,滿足個向量中能選出,如果在設(shè)有向量組rrAA???,,,21?定義1線性無關(guān);)向量組(rA???,,,:1210?關(guān),個向量的話)都線性相中有個向量(如果中任意)向量組(112??rArA.的秩稱為向量組數(shù)最大無關(guān)組所
2025-05-04 23:26
【摘要】1實驗十二學(xué)習(xí)目標(biāo)?矩陣秩的求法?把矩陣化為初等行矩陣?向量組的秩和最大線性無關(guān)組?求齊次線性方程組AX=0的基礎(chǔ)解系?求非齊次線性方程組AX=b的一個特解2矩陣的秩矩陣的秩的命令:rank(A)例1已知M=求M矩陣的秩.
2024-10-25 16:03
【摘要】《線性代數(shù)》下頁結(jié)束返回一、矩陣的秩的概念二、初等變換求矩陣的秩三、向量組方面的一些重要方法下頁第7節(jié)矩陣的秩及向量組的極大無關(guān)組求法①向量組的秩的計算方法②極大無關(guān)組的確定方法③用極大無關(guān)組表示其它向量的方法注意:第6-7節(jié)與教材內(nèi)容及次序有所不同,請作筆記.《線性代數(shù)》下頁
2024-10-24 18:11
【摘要】求向量組的秩與最大無關(guān)組一、對于具體給出的向量組,求秩與最大無關(guān)組1、求向量組的秩(即矩陣的秩)的方法:為階梯形矩陣【定理】矩陣的行秩等于其列秩,且等于矩陣的秩.(三秩相等)①把向量組的向量作為矩陣的列(或行)向量組成矩陣A;②對矩陣A進(jìn)行初等行變換化為階梯形矩陣B;③階梯形B中非零行的個數(shù)即為所求向量組的秩.【例1】求下列向量組a1=(1,2,3,4)
2025-07-01 11:58
【摘要】........向量組的線性相關(guān)與線性無關(guān)設(shè),,稱為的一個線性組合?!緜渥?】按分塊矩陣的運算規(guī)則,。這樣的表示是有好處的。設(shè),,如果存在,使得則稱可由線性表示。,寫成矩陣形式,即。因此,可由線性表示即線性方程組有解,而該方程
2025-05-22 03:01
【摘要】高等代數(shù)(I)AdvancedLinearAlgebra助教:鄧劍王威楊主講教師:高峽理科樓1478S?大課周三3,4節(jié)理教105周五1,2節(jié)理教105?習(xí)題課
2025-01-25 14:54
【摘要】第一章習(xí)題課一、向量的定義定義:n個有次序的數(shù)a1,a2,···,an所組成的數(shù)組稱為n維向量,這n個數(shù)稱為該向量的n個分量,第i個數(shù)ai稱為第i個分量.分量全為實數(shù)的向量稱為實向量,分量為復(fù)數(shù)的向量稱為復(fù)向量.
2024-08-18 02:52
【摘要】第四章向量組的線性相關(guān)性§1向量組及其線性組合定義1:向量:n個有次序的數(shù)12,,,naaa所組成的數(shù)組稱為n維向量,這n個數(shù)稱為該向量的n個分量,第i個數(shù)ia稱為第i個分量。分量全為實數(shù)的向量稱為實向量,分量全為復(fù)數(shù)的向量稱為復(fù)向量。定義2
2024-10-25 13:28
【摘要】1§3向量組的線性相關(guān)性主要內(nèi)容向量的線性組合向量組的線性相關(guān)性向量組的秩極大線性無關(guān)組方程組與向量組的關(guān)系的進(jìn)一步研究線性相關(guān)性的判定方法目錄下頁返回結(jié)束向量組的性質(zhì)2一、向量的線性組合以下討論我們總是在一固定的數(shù)域P上的n維
2024-10-07 19:09
【摘要】第三節(jié)向量組的線性相關(guān)性分布圖示★線性相關(guān)與線性無關(guān) ★例1 ★例2★證明線性無關(guān)的一種方法線性相關(guān)性的判定★定理1 ★定理2★例3 ★例4 ★例5 ★例6★定理3 ★定理4★定理5 ★例7★內(nèi)容小結(jié) ★課堂練習(xí)★習(xí)題3-3內(nèi)容要點一、線性相關(guān)性概念
2024-08-18 15:32
【摘要】一、主要內(nèi)容1、向量組的線性相關(guān)性,向量組的秩及找一個最大無關(guān)組,并用該最大無關(guān)線性無關(guān)組表示向量組中的其余向量第四章向量組的線性相關(guān)性.,.,,,21個分量稱為第個數(shù)第個數(shù)稱為該向量的分量這維向量數(shù)組稱為所組成的個有次序的數(shù)iainnaaanin?分
2024-10-25 21:15
【摘要】1A不同特征值所對應(yīng)的特征向量線性無關(guān).若A有n個互異特征值,則一定有n個線性無關(guān)的特征向量.屬于不同特征值的線性無關(guān)的特征向量仍線性無關(guān).tr()nniiiiia???????A11nii????A1復(fù)習(xí)上講主要內(nèi)容實對稱陣不同特征值的實特征向量必正交.
2025-05-19 23:23
【摘要】習(xí)題課件線性代數(shù)——向量組線性相關(guān)性習(xí)題講解習(xí)題課件第四章向量組的線性相關(guān)性一、要點復(fù)習(xí)二、作業(yè)講解三、典型例題介紹習(xí)題課件一、要點復(fù)習(xí)一個向量可由一組向量線性表示一組向量可由另一組向量線性表示兩組向量可相互線性表示(等價)向量組的線性相關(guān)性線性相關(guān)線性無關(guān)線性表
2025-01-26 10:16
【摘要】線性代數(shù)第四章第四章線性方程組與向量組的線性相關(guān)性?本章教學(xué)內(nèi)容?§1消元法與線性方程組的相容性?§2向量組的線性相關(guān)性?§3向量組的秩矩陣的行秩與列秩?§4線性方程組解的結(jié)構(gòu)§1消元法與線性方程組的相容性?本節(jié)教學(xué)內(nèi)容?
2024-12-14 01:17
【摘要】向量組的正交性一、向量的內(nèi)積:1:設(shè)有向量),,(2,1naaa???),,(2,1nbbb???)。,的內(nèi)積,記為(與稱為向量????nnbababa?????2211),(??nnbababa????2211Ti?????),()())(????,(),(?ii)(,)(??????kkkiii,
2024-10-10 19:17