【正文】
(2020).Transcriptional regulation of phosphateresponsive genes in lowaffinity phosphatetransporterdefective mutants in Saccharomyces cerevisiae. Biochem. Biophys. Res. Com. 306, 843–850. Barabote,.,etal.(2020).Extra domains in secondary transport carriers and channel proteins. Bioch. Biophys. Acta. 1758, 1557–1579. Bari, ., Pant, ., Stitt, M., and Scheible,. (2020). PHO2, micro RNA399 and PHR1 define a phosphate signalling pathway in plants. Plant Physiol. 141, 988–999. Brenner, ., Romanov, ., Kollmer, I., Burkle, L., and Schmulling, T. (2020). Immediateearly and delayed cytokinin response genes of Arabidopsis thaliana identified by genomewide expression profiling reveal novel cytokininsensitive processes and suggest cytokinin action through transcriptional J. 44, 314–333. Burleigh, ., and Harrison, . (1997). A novel gene whose expression in Medicago truncatula roots is suppressed in response to colonization by vesiculararbuscular mycorrhizal (VAM) fungi and to phosphate nutrition. Plant 12 Mol. Biol. 34, 199–208. Burleigh, ., and Harrison, . (1999). The downregulation of Mt4like genes by phosphate fertilization occurs systemically and involves phosphate translocation to the shoots. Plant Physiol. 119, 241–248. CalderonVazquez, C., IbarraLaclette, E., CaballeroPerez, J., and HerreraEstrella, L. (2020). Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant and speciesspecific levels. J. Exp. Bot. 59, 2479–2497. Carswell, ., Grant, ., Theodorou, ., Harris, J., Niere, .,and Plaxton, . (1996). The fungicide phosphonate disrupts the phosphatestarvation response in Brassica nigra Physiol. 110, 105–110. Chen, ., Wang, Y., and Wu, . (2020). Membrane transporters for nitrogen, phosphate and potassium uptake in plants. J. Int. Plant Biol. 7, 835–848. Chen, ., Nimmo, ., Jenkins, ., and Nimmo, . (2020). BHLH32 modulates several biochemical and morphological processes that respond to Pi starvation in Arabidopsis. Biochem. , 191–198. Chevalier, F., Pata, M., Nacry, P., Doumas, P., and Rossignol, M. (2020). Effects of phosphate availability on the root system architecture:largescale analysis of the natural variation between Arabidopsis accessions. Plant Cell Environ. 1839–1850. Chiou, . (2020). The role of microRNAs in sensing nutrient Cell Environ. 30, 323–332. Chiou, ., Aung, K., Lin, ., Wu, ., Chiang, ., and Su, . (2020). Regulation of phoshate homeostasis by microRNA in Arabidopsis. Plant Cell. 18, 412–421. Ciereszko, I., and Barbachowska, A. (2020). Sucrose metabolism in leaves and roots of bean (Phaseolus vulgaris L.) during phosphate deficiency. J. Plant Physiol. 156, 640–644. Ciereszko, I., Gniazdowska, A., Mikulska, M., and Rychter, .(1996). Assimilate translocation in bean plants (Phaseolus vulgaris L) during phosphate deficiency. J. Plant Physiol. 149, 343–348. Ciereszko, I., Johansson, H., and Kleczkowski, . (2020). Interactive effects of phosphate deficiency, sucrose and light/dark conditions on gene expression of UDPglucose pyrophosphorylase in Arabidopsis. J. Plant Physiol. 162, 343–353. Cohen, A., Perzov, N., Nelson, H., and Nelson, N. (1999). A novel family of yeast chaperons involved in the distribution of VATPase and other membrane proteins. J. Biol. Chem. 274, 26885–26893. Cubero, B., Nakagawa, Y., Jiang, ., Miura, ., Li, F.,Raghothama, ., Bressan, ., Hasegawa, ., and Pardo, . (2020). The phosphate transporter PHT4。 SPX。 In Plants Geic Analysis Progress of PiStarvation ABSTRACT Phosphate (Pi) availability is a major factor limiting growth, development, and productivity of plants. In both ecological and agricultural contexts, plants often grow in soils with low soluble phosphate content. Plants respond to this 11 situation by a series of developmental and metabolic adaptations that are aimed at increasing the acquisition of this vital nutrient fromthe soil, as well as to sustain plant growth and survival. The development of a prehensive understanding of how plants sense phosphate deficiency and coordinate the responses via signaling pathways has bee of major interest, and a number of signaling players and works have begun to surface for the regulation of the phosphate deficiency response. In practice, application of such knowledge to improve plant Pi nutrition is hindered by plex crosstalks, which are emerging in the face of new data, such as the coordination of the phosphatedeficiency signaling works with those involved with hormones, photoassimilates (sugar), as well as with the homeostasis of other ions,such as iron. In this review, we focus on these crosstalks and on recent progress in discovering new signaling players involved in the Pistarvation responses, such as proteins having SPX domains. Key words: Phosphate。 清楚的了解的調(diào)控機制 ,管理控制內(nèi)部 Pi通量 是 比較 重要的 (細胞內(nèi) / interan)。 目前 ,這些信號之間的相互關(guān)系的生物學(xué)意義以及它們的分子基礎(chǔ)研究仍然很少的 ,盡管他們對于改善植物對 Pi營養(yǎng)的利用具有很重要的意義。有趣的是 ,MYB62 的表達完成 也表現(xiàn)出一 些特點 , 下降的生物合成基因表達和展示了一種遺傳算法的特點,并顯示射表型的遺傳缺陷 (Devaiah et al., 2020),這些結(jié)果加強了 Pi 饑渴應(yīng)答 反應(yīng)和內(nèi)源 GA 之間的聯(lián)系 。如生長素和乙烯調(diào)節(jié)下 Pi 的局限性 (Rubio et al., 2020)。 UhdeStone et al., 2020。 Mu168。 Misson et al., 2020。 Martin et al., 2020。 Hou et al., 2020。 Martin et al., 2020)。 Salama and Wareing, 1979)。 Martin et al., 2020。有報道表明細胞分裂素與植物的 Pi 和糖信號狀態(tài) 的變化 有關(guān)( FrancoZorrilla et al., 2020。 Rubio et al., 2020)。 Ribot et al., 2020a) 這些研究提供強有力的 證據(jù)證明存在的蔗糖信號通路與植物的 Pi 饑餓反應(yīng)之間的 關(guān) 連。 Mu168。 Karthikeyan et al., 2020。外源蔗糖影響基因表達水平導(dǎo)致 Pi 缺乏,如 UDP 葡萄糖磷酸化酶,IPS1, ACP5(編碼酸性磷酸酶)與成員 PHT1 和 PHO1 基因 家族 (Ciereszko et al., 10 2020。不僅是芽 在 韌皮部 中 蔗糖積累量的變化和 糖類 的 磷饑渴 反應(yīng)的衰減特性都會導(dǎo)致 pho3 突變體 (Zakhleniuk et al., 2020)。值得注意的是缺乏 Pi 的植物, 根和芽韌皮部蔗糖 含 量的增加和根表型的變化具有非常密切的聯(lián)系,指示出潛在的 cause–effect 關(guān)系 的 存在 (AlGhazi et al., 2020。 Mu168。 Hermans et al., 2020。 Pi 導(dǎo)致其植物根 體系結(jié)構(gòu)的現(xiàn)顯著變化,即增加根毛的形成,證明外源蔗糖的應(yīng)用 (Jain et al., 2020)。 Ciereszko et al., 1