freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)綜合題專題復(fù)習【平行四邊形】專題解析附答案-文庫吧資料

2025-03-30 22:26本頁面
  

【正文】 9。M∥AB,MN=AB=8,∵O39。N⊥BC于N,延長NO39?!郟Q=,設(shè)以PQ為直徑的圓的圓心為O39。=2,在Rt△ABP和Rt△A39。=6,得出A39。Q=AQ=10,在Rt△DQA39。落在CD邊上時,由折疊的性質(zhì)得:A39。P=AP,證出∠APQ=∠AQP,得出AP=AQ=A39。=AP=8(42t)=4+2t,由勾股定理得出方程,解方程即可;②當點P在BC邊上,A39。F=4,在Rt△A39。F==6,得出A39。Q=∠A=90176。=PA,A39。的半徑,即可得出結(jié)論;(3)分三種情況:①當點P在AB邊上,A39。N=MNO39。M∥AB,MN=AB=8,由三角形中位線定理得出O39。N⊥BC于N,延長NO39。(2)不相切,證明見解析;(3)t=、.【解析】【分析】(1)由題意得出AB=2BE,t=2時,BE=22=4,求出AB=2BE=8,AE=BE=4,t=11時,2t=22,得出BC=18,當t=0時,點P在E處,m=△AEQ的面積=AQAE=20即可;(2)當t=1時,PE=2,得出AP=AE+PE=6,由勾股定理求出PQ=2,設(shè)以PQ為直徑的圓的圓心為O39。﹣2∠F,∵BG=BF,∴∠GBF=180176。即∠MEC=90176?!唷鱉EC為直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.(3)(1)中的結(jié)論仍然成立.理由如下:過F作CD的平行線并延長CG交于M點,連接EM、EC,過F作FN垂直于AB于N.由于G為FD中點,易證△CDG≌△MFG,得到CD=FM,又因為BE=EF,易證∠EFM=∠EBC,則△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90176。∴四邊形AENM是矩形,在矩形AENM中,AM=EN.在△AMG與△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.證法二:延長CG至M,使MG=CG,連接MF,ME,EC.在△DCG與△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE與Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90176。如圖②所示,取DF中點G,連接EG,CG.問(1)中的結(jié)論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.(3)將圖①中△BEF繞B點旋轉(zhuǎn)任意角度,如圖③所示,再連接相應(yīng)的線段,問(1)中的結(jié)論是否仍然成立?(請直接寫出結(jié)果,不必寫出理由)【答案】(1)證明見解析(2)證明見解析(3)結(jié)論仍然成立【解析】【分析】(1)利用直角三角形斜邊上的中線等于斜邊的一半,可證出CG=EG.(2)結(jié)論仍然成立,連接AG,過G點作MN⊥AD于M,與EF的延長線交于N點;再證明△DAG≌△DCG,得出AG=CG;再證出△DMG≌△FNG,得到MG=NG;再證明△AMG≌△ENG,得出AG=EG;最后證出CG=EG.(3)結(jié)論依然成立.【詳解】(1)CG=EG.理由如下:∵四邊形ABCD是正方形,∴∠DCF=90176。AD是邊BC上的中線,得AD=BD=CD,即可證明.【詳解】(1)證明:∵AE∥BC,DE∥AB ,∴四邊形ABDE是平行四邊形,∴AE=BD,∵AD是邊BC上的中線,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四邊形ADCE是平行四邊形.(2) 證明:∵∠BAC=90176。 ∴∠DMH=∠MDH=45176。 ∴四邊形BECF是矩形, ∴BF=CF=,CF=BE=,在Rt△OCE中,OC==.(3)、如圖3中,當OF⊥DE時,OF的值最大,設(shè)OF交DE于H,在OH上取一點M,使得OM=DM,連接DM.∵FD=FE=DE=1,OF⊥DE, ∴DH=HE,OD=OE,∠DOH=∠DOE=176。 在Rt△ODC中,∵∠C=90176。.∴△AOE≌△BOG(AAS),∴OE=OG,AE=BG,∵AE﹣EF=AF,EF=OG=OE,AE=BG=AF+EF=OE+AF,∴BF﹣AF=BG+GF﹣(AE﹣EF)=AE+OE﹣AE+EF=OE+OE=2OE,∴BF﹣AF=2OE.2.已知Rt△ABD中,邊AB=OB=1,∠ABO=90176?!唷螦OG+∠BOG=90176?!唷螦OE+∠AOG=90176。∴四邊形HBFE為矩形∴BF=HE,EF=BH∵四邊形ABCD是正方形∴OA=OB,∠AOB=90176。∴∠AOE=∠OBH∴△AEO≌△OHB(AAS)∴AE=OH,OE=BH∴AF+BF=AE+EF+BF=OH+BH+EH=OE+OE=2OE.②AF﹣BF=2OE 證明:如圖3,延長OE,過點B作BH⊥OE于點H∴∠EHB=90176。∴四邊形EFBH為矩形∴BF=EH,EF=BH∵四邊形ABCD為正方形∴OA=OB,∠AOB=90176?!逴E⊥AB,∴OE=AB,∴AB=2OE,(2)①AF+BF=2OE證明:如圖2,過點B作BH⊥OE于點H∴∠BHE=∠BHO=90176。再根據(jù)同角的余角相等求出∠AOE=∠OBH,然后利用“角角邊”證明△AOE和△OBH全等,根據(jù)全等三角形對應(yīng)邊相等可得OH=AE,OE=BH,再根據(jù)AFEF=AE,整理即可得證;②過點B作BH⊥OE交OE的延長線于H,可得四邊形BHEF是矩形,根據(jù)矩形的對邊相等可得EF=BH,BF=HE,根據(jù)正方形的對角線相等且互相垂直平分可得OA=OB,∠AOB=90176。②AF﹣BF=2OE 證明見解析。20202021備戰(zhàn)中考數(shù)學(xué)綜合題專題復(fù)習【平行四邊形】專題解析附答案一、平行四邊形1.如圖1,正方形ABCD的一邊AB在直尺一邊所在直線MN上,點O是對角線AC、BD的交點,過點O作OE⊥MN于點E.(1)如圖1,線段AB與OE之間的數(shù)量關(guān)系為  ?。ㄕ堉苯犹罱Y(jié)論)(2)保證點A始終在直線MN上,正方形ABCD繞點A旋轉(zhuǎn)θ(0<θ<90176。),過點 B作BF⊥MN于點F.①如圖2,當點O、B兩點均在直線MN右側(cè)時,試猜想線段AF、BF與OE之間存在怎樣的數(shù)量關(guān)系?請說明理由.②如圖3,當點O、B兩點分別在直線MN兩側(cè)時,此時①中結(jié)論是否依然成立呢?若成立,請直接寫出結(jié)論;若不成立,請寫出變化后的結(jié)論并證明.③當正方形ABCD繞點A旋轉(zhuǎn)到如圖4的位置時,線段AF、BF與OE之間的數(shù)量關(guān)系為  ?。ㄕ堉苯犹罱Y(jié)論)【答案】(1)AB=2OE;(2)①AF+BF=2OE,證明見解析。③BF﹣AF=2OE,【解析】試題分析:(1)利用直角三角形斜邊的中線等于斜邊的一半即可得出結(jié)論;(2)①過點B作BH⊥OE于H,可得四邊形BHEF是矩形,根據(jù)矩形的對邊相等可得EF=BH,BF=HE,根據(jù)正方形的對角線相等且互相垂直平分可得OA=OB,∠AOB=90176。再根據(jù)同角的余角相等求出∠AOE=∠OBH,然后利用“角角邊”證明△AOE和△OBH全等,根據(jù)全等三角形對應(yīng)邊相等可得OH=AE,OE=BH,再根據(jù)AFEF=AE,整理即可得證;③同②的方法可證.試題解析:(1)∵AC,BD是正方形的對角線,∴OA=OC=OB,∠BAD=∠ABC=90176?!逴E⊥MN,BF⊥MN∴∠BFE=∠OEF=90176?!唷螦OE+∠HOB=∠OBH+∠HOB=90176。∵OE
點擊復(fù)制文檔內(nèi)容
范文總結(jié)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1