freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

中考數(shù)學專題復習平行四邊形的綜合題附詳細答案-文庫吧資料

2025-03-31 07:20本頁面
  

【正文】 點O.(1)求證:△AOB和△AOE是“友好三角形”;(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.探究:在△ABC中,∠A=30176?!郉C==8.∵EQ⊥BC,∠C=∠ADC=90176。AC=AB,∴在△ABE和△ACF中,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,則S△ABE=S△ACF.故S四邊形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H點,則BH=2,S四邊形AECF=S△ABC===;(3)解:由“垂線段最短”可知,當正三角形AEF的邊AE與BC垂直時,邊AE最短.故△AEF的面積會隨著AE的變化而變化,且當AE最短時,正三角形AEF的面積會最小,又S△CEF=S四邊形AECF﹣S△AEF,則△CEF的面積就會最大.由(2)得,S△CEF=S四邊形AECF﹣S△AEF=﹣=.點睛:本題考查了菱形每一條對角線平分一組對角的性質,考查了全等三角形的證明和全等三角形對應邊相等的性質,考查了三角形面積的計算,本題中求證△ABE≌△ACF是解題的關鍵.10.(問題情境)在△ABC中,AB=AC,點P為BC所在直線上的任一點,過點P作PD⊥AB,PE⊥AC,垂足分別為D、E,過點C作CF⊥AB,垂足為F.當P在BC邊上時(如圖1),求證:PD+PE=CF.證明思路是:如圖2,連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.(不要證明)(變式探究)(1)當點P在CB延長線上時,其余條件不變(如圖3),試探索PD、PE、CF之間的數(shù)量關系并說明理由;請運用上述解答中所積累的經(jīng)驗和方法完成下列兩題:(結論運用)(2)如圖4,將長方形ABCD沿EF折疊,使點D落在點B上,點C落在點C′處,點P為折痕EF上的任一點,過點P作PG⊥BE、PH⊥BC,垂足分別為G、H,若AD=16,CF=6,求PG+PH的值.(遷移拓展)(3)在直角坐標系中,直線l1:y=x+8與直線l2:y=﹣2x+8相交于點A,直線ll2與x軸分別交于點B、點C.點P是直線l2上一個動點,若點P到直線l1的距離為2.求點P的坐標.【答案】【變式探究】證明見解析【結論運用】8【遷移拓展】(﹣1,6),(1,10)【解析】【變式探究】連接AP,同理利用△ABP與△ACP面積之差等于△ABC的面積可以證得;【結論運用】過點E作EQ⊥BC,垂足為Q,根據(jù)勾股定理和矩形的性質解答即可;【遷移拓展】分兩種情況,利用結論,求得點P到x軸的距離,再利用待定系數(shù)法可求出P的坐標.【詳解】變式探究:連接AP,如圖3: ∵PD⊥AB,PE⊥AC,CF⊥AB,且S△ABC=S△ACP﹣S△ABP,∴AB?CF=AC?PE﹣ AB?PD.∵AB=AC,∴CF=PD﹣PE;結論運用:過點E作EQ⊥BC,垂足為Q,如圖④,∵四邊形ABCD是長方形,∴AD=BC,∠C=∠ADC=90176?!唷螦BC=∠ADC=60176。∠3+∠2=60176。△AEF為正三角形,E、F在菱形的邊BC,CD上.(1)證明:BE=CF.(2)當點E,F(xiàn)分別在邊BC,CD上移動時(△AEF保持為正三角形),請?zhí)骄克倪呅蜛ECF的面積是否發(fā)生變化?若不變,求出這個定值;如果變化,求出其最大值.(3)在(2)的情況下,請?zhí)骄俊鰿EF的面積是否發(fā)生變化?若不變,求出這個定值;如果變化,求出其最大值.【答案】(1)見解析;(2);(3)見解析【解析】試題分析:(1)先求證AB=AC,進而求證△ABC、△ACD為等邊三角形,得∠4=60176。即∠MEC=90176?!唷鱉EC為直角三角形.∵MG=CG,∴EG=MC,∴EG=CG.(3)(1)中的結論仍然成立.理由如下:過F作CD的平行線并延長CG交于M點,連接EM、EC,過F作FN垂直于AB于N.由于G為FD中點,易證△CDG≌△MFG,得到CD=FM,又因為BE=EF,易證∠EFM=∠EBC,則△EFM≌△EBC,∠FEM=∠BEC,EM=EC∵∠FEC+∠BEC=90176?!嗨倪呅蜛ENM是矩形,在矩形AENM中,AM=EN.在△AMG與△ENG中,∵AM=EN,∠AMG=∠ENG,MG=NG,∴△AMG≌△ENG(SAS),∴AG=EG,∴EG=CG.證法二:延長CG至M,使MG=CG,連接MF,ME,EC.在△DCG與△FMG中,∵FG=DG,∠MGF=∠CGD,MG=CG,∴△DCG≌△FMG,∴MF=CD,∠FMG=∠DCG,∴MF∥CD∥AB,∴EF⊥MF.在Rt△MFE與Rt△CBE中,∵MF=CB,∠MFE=∠EBC=90176。如圖②所示,取DF中點G,連接EG,CG.問(1)中的結論是否仍然成立?若成立,請給出證明;若不成立,請說明理由.(3)將圖①中△BEF繞B點旋轉任意角度,如圖③所示,再連接相應的線段,問(1)中的結論是否仍然成立?(請直接寫出結果,不必寫出理由)【答案】(1)證明見解析(2)證明見解析(3)結論仍然成立【解析】【分析】(1)利用直角三角形斜邊上的中線等于斜邊的一半,可證出CG=EG.(2)結論仍然成立,連接AG,過G點作MN⊥AD于M,與EF的延長線交于N點;再證明△DAG≌△DCG,得出AG=CG;再證出△DMG≌△FNG,得到MG=NG;再證明△AMG≌△ENG,得出AG=EG;最后證出CG=EG.(3)結論依然成立.【詳解】(1)CG=EG.理由如下:∵四邊形ABCD是正方形,∴∠DCF=90176。AD是邊BC上的中線,得AD=BD=CD,即可證明.【詳解】(1)證明:∵AE∥BC,DE∥AB ,∴四邊形ABDE是平行四邊形,∴AE=BD,∵AD是邊BC上的中線,∴BD=DC,∴AE=DC,又∵AE∥BC,∴四邊形ADCE是平行四邊形.(2) 證明:∵∠BAC=90176?!郋G2=ME2+MG2,∵EG=EF,MG=BM=DF=NF,∴EF2=ME2+NF2;(3)EF2=2BE2+2DF2.如圖所示,延長EF交AB延長線于M點,交AD延長線于N點,將△ADF繞著點A順時針旋轉90176。+45176。∴△BME、△DNF、△CEF均為等腰直角三角形,∴CE=CF,BE=BM,NF=DF,∴a﹣BE=a﹣DF,∴BE=DF,∴BE=BM=DF=BG,∴∠BMG=45176。在△AGE與△AFE中,∴△AGE≌△AFE(SAS);(2)設正方形ABCD的邊長為a.將△ADF繞著點A順時針旋轉90176?!摺螮AF=45176。得到△ABG,根據(jù)旋轉的性質可以得到△ADF≌△ABG
點擊復制文檔內容
法律信息相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1