freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)-平行四邊形-綜合題含答案解析-文庫吧資料

2025-03-30 22:25本頁面
  

【正文】 76?!唷鰽EF≌△BEG,∴EF=EG,AF=BG,∴四邊形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周長的最大值=4+4.(3)如圖③中,延長DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠APN=∠BAM+∠ABP=∠CBN+∠ABN=60176。∴四邊形EFPG是矩形,∴∠FEG=∠AEB=90176?!郃M⊥BN.(2)如圖②中,以AB為斜邊向外作等腰直角三角形△AEB,∠AEB=90176?!唷螦BN+∠BAM=90176。作EF⊥PA于E,作EG⊥PB于G,連接EP,證明PA+PB=2EF,求出EF的最大值即可;(3)如圖③,延長DA到K,使得AK=AB,則△ABK是等邊三角形,連接PK,取PH=PB,證明PA+PB=PK,求出PK的最大值即可.試題解析:(1)結(jié)論:AM⊥BN.理由:如圖①中,∵四邊形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90176?!唷螩DE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四邊形CEGF平行四邊形,∴FG∥CE,F(xiàn)G=CE.12.問題探究(1)如圖①,已知正方形ABCD的邊長為4.點M和N分別是邊BC、CD上兩點,且BM=CN,連接AM和BN,交于點P.猜想AM與BN的位置關(guān)系,并證明你的結(jié)論.(2)如圖②,已知正方形ABCD的邊長為4.點M和N分別從點B、C同時出發(fā),以相同的速度沿BC、CD方向向終點C和D運動.連接AM和BN,交于點P,求△APB周長的最大值;問題解決(3)如圖③,AC為邊長為2的菱形ABCD的對角線,∠ABC=60176。.在△CBF與△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90176。.∵∠GEH+∠HGE=90176。EC(2)四邊形AECF是菱形∵△ADE≌△B39。C且∠DEA=∠B39?!唷螪=∠B39。利用AAS證明全等,則結(jié)論可得;(2)由△AED≌△CEB′可得AE=CE,且EF⊥AC,根據(jù)等腰三角形的性質(zhì)可得EF垂直平分AC,∠AEF=∠CEF.即AF=CF,∠CEF=∠AFE=∠AEF,可得AE=AF,則可證四邊形AECF是菱形.【詳解】證明:(1)∵四邊形ABCD是平行四邊形∴AD=BC,CD∥AB,∠B=∠D∵平行四邊形ABCD沿其對角線AC折疊∴BC=B39。C,∠B=∠D=∠B39。由勾股定理得:AC=,∴△ABC的面積是BCAC=22=2;②如圖2,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OA′,BO=CO,∴四邊形A′BDC是平行四邊形,∴A′C=BD=2,過C作CQ⊥A′D于Q,∵A′C=2,∠DA′C=∠BAC=30176。根據(jù)三角形面積公式求出即可;②求出高CQ,求出△A′DC的面積.即可求出△ABC的面積.試題解析:(1)∵四邊形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四邊形ABFE是平行四邊形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB與△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四邊形CDOF=S矩形ABCD2S△ABF=46243=12.探究:解:分為兩種情況:①如圖1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四邊形A′DCB是平行四邊形,∴BC=A′D=2,過B作BM⊥AC于M,∵AB=4,∠BAC=30176。即可推出四邊形ADCF是矩形.(2)四邊形ABDF、四邊形AGEF、四邊形GBDE、四邊形AGDE、四邊形GDCE都是平行四邊形.【詳解】證明:∵,∴,∵是中點,∴,在和中,∴,∴,∵,∴四邊形是平行四邊形,∵,∴,∴四邊形是矩形.∵線段、線段、線段都是的中位線,又,∴,∴四邊形、四邊形、四邊形、四邊形、四邊形都是平行四邊形.【點睛】考查平行四邊形的判定、矩形的判定、三角形的中位線定理、全等三角形的判定和性質(zhì)等知識,正確尋找全等三角形解決問題是解題的關(guān)鍵.8.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)【答案】見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應(yīng)用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD∠ECD=∠ECG∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中, ∴△BCE≌△DCG(SAS),∴BE=DG.應(yīng)用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE= ,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.9.定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.性質(zhì):如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.應(yīng)用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1