freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學-平行四邊形-綜合題含答案解析(參考版)

2025-03-30 22:25本頁面
  

【正文】 AC=4,BC=3,所以AB=5.所以CD=.所以PQ=.在Rt△ACD中AC=4,CD=,所以AD=.因為AE=nPA,所以PE==CQ=PD=ADAP=.所以AP=.所以=.問題2:(1)如圖2,設對角線與相交于點.所以G是DC的中點,作QHBC,交BC的延長線于H,因為AD//BC,所以.所以.又,所以Rt≌Rt.所以AD=HC,QH=AP.由圖知,當 AB時,的長最小,即=CH=4.易得四邊形BPQH為矩形,所以QH=BP=AP.所以.(若學生有能力從梯形中位線角度考慮,若正確即可評分.但講評時不作要求)(2)PQ的最小值為..考點:1.直角三角形的性質(zhì);2.全等三角形的判定與性質(zhì);3.平行四邊形的性質(zhì);4矩形的判定與性質(zhì).。AC=4,BC=3,P為AC邊上的一動點,以PB,PA為邊構(gòu)造□APBQ,求對角線PQ的最小值及PQ最小時的值.(1)在解決這個問題時,小明構(gòu)造出了如圖2的輔助線,則PQ的最小值為 ,當PQ最小時= _____ __;(2)小明對問題1做了簡單的變式思考.如圖3,P為AB邊上的一動點,延長PA到點E,使AE=nPA(n為大于0的常數(shù)).以PE,PC為邊作□PCQE,試求對角線PQ長的最小值,并求PQ最小時的值;問題2:在四邊形ABCD中,AD∥BC,AB⊥BC,AD=1,AB=2,BC=3.(1)如圖4,若為上任意一點,以,為邊作□.試求對角線長的最小值和PQ最小時的值.(2)若為上任意一點,延長到,使,再以,為邊作□.請直接寫出對角線長的最小值和PQ最小時的值.【答案】問題1:(1)3,;(2)PQ=,=.問題2:(1)=4,.(2)PQ的最小值為..【解析】試題分析:問題1:(1)首先根據(jù)條件可證四邊形PCBQ是矩形,然后根據(jù)條件“四邊形APBQ是平行四邊形可得AP=QB=PC,從而可求的值.(2)由題可知:當QP⊥AC時,PQ最?。^點C作CD⊥AB于點D.此時四邊形CDPQ為矩形,PQ=CD,在Rt△ABC中,∠C=90176?!帱cF、D、E′共線,∵∠EAF=∠BAD,∴∠1+∠2=∠BAD,∴∠2+∠3=∠BAD,∴∠EAF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∴EF=DE′+DF=BE+DF;歸納:在四邊形ABCD中,點E、F分別在BC、CD上,當AB=AD,∠B+∠D=180176?!螮AF=∠BAD時,EF=BE+DF成立.理由如下:如圖(3),∵AB=AD,∴把△ABE繞點A逆時針旋轉(zhuǎn)∠BAD的度數(shù)至△ADE′,如圖(3),∴∠EAE′=∠BAD,∠1=∠3,AE′=AE,DE′=BE,∠ADE′=∠B,∵∠B+∠D=180176?!唷螮AF=∠E′AF,在△AEF和△AE′F中,∴△AEF≌△AE′F(SAS),∴EF=E′F,∵∠ADE′+∠ADC=120176?!?=∠3,AE′=AE,DE′=BE,∠ADE′=∠B=60176。∴把△ABE繞點A逆時針旋轉(zhuǎn)120176?!郃B=AD,∠1+∠2=60176。時,EF=BE+DF不成立,EF<BE+DF.理由如下:∵在菱形ABCD中,∠BAD=120176。知F、D、E′共線,因此有EF=DE′+DF=BE+DF;根據(jù)前面的條件和結(jié)論可歸納出結(jié)論.試題解析:(1)當∠BAD=120176。至△ADE′,如圖(2),連結(jié)E′F,根據(jù)菱形和旋轉(zhuǎn)的性質(zhì)得到AE=AE′,∠EAF=∠E′AF,利用“SAS”證明△AEF≌△AE′F,得到EF=E′F;由于∠ADE′+∠ADC=120176。時,還有EF=BE+DF嗎?請說明理由.(2)在四邊形ABCD中,點E、F分別在BC、CD上,當AB=AD,∠B+∠D=180176。=∠EAF,又∵AE′=AE,AF=AF∴△AE′F≌△AEF(SAS)∴EF=E′F=DE′+DF=BE+DF.類比猜想:(1)請同學們研究:如圖(2),在菱形ABCD中,點E、F分別在BC、CD上,當∠BAD=120176。45176?!喟选鰽BE繞點A逆時針旋轉(zhuǎn)90176?!鰾DF是直角三角形,根據(jù)勾股定理即可作出判斷.試題解析:(1)理由是:如圖1,∵AB=AD,∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖1,∵∠ADC=∠B=90°,∴∠FDG=180°,點F. D. G共線,則∠DAG=∠BAE,AE=AG,∠FAG=∠FAD+∠GAD=∠FAD+∠BAE=90°?45°=45°=∠EAF,即∠EAF=∠FAG,在△EAF和△GAF中,AF=AF,∠EAF=∠GAF,AE=AG,∴△AFG≌△AFE(SAS),∴EF=FG=BE+DF;(2)∠B+∠D=180°時,EF=BE+DF;∵AB=AD,∴把△ABE繞點A逆時針旋轉(zhuǎn)90°至△ADG,可使AB與AD重合,如圖2,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,點F. D. G共線,在△AFE和△AFG中,AE=AG,∠FAE=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF,故答案為:∠B+∠ADC=180°;(3)BD2+CE2=DE2.理由是:把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,則∠FAB=∠CAE.∵∠BAC=90°,∠DAE=45°,∴∠BAD+∠CAE=45°,又∵∠FAB=∠CAE,∴∠FAD=∠DAE=45°,則在△ADF和△ADE中,AD=AD,∠FAD=∠DAE,AF=AE,∴△ADF≌△ADE,∴DF=DE,∠C=∠ABF=45°,∴∠BDF=90°,∴△BDF是直角三角形,∴BD2+BF2=DF2,∴BD2+CE2=DE2.14.倡導研究性學習方式,著力教材研究,習題研究,是學生跳出題海,提高學習能力和創(chuàng)新能力的有效途徑.下面是一案例,請同學們認真閱讀、研究,完成“類比猜想”的問題.習題 如圖(1),點E、F分別在正方形ABCD的邊BC、CD上,∠EAF=45176。至△ADG,可使AB與AD重合,證出△AFG≌△AFE,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(2)把△ABE繞點A逆時針旋轉(zhuǎn)90176。猜想BD、DE、EC滿足的等量關系,并寫出推理過程。若∠B,∠D都不是直角,則當∠B與∠D滿足等量關系 時,仍有EF=BE+DF;(3)聯(lián)想拓展如圖3,在△ABC中,∠BAC=90176。,點E.F分別在正方形ABCD的邊BC、CD上,∠EAF=45176?!郃、K、B、P四點共圓,∴∠BPH=∠KAB=60176?!摺螦KB=601
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1