freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)知識(shí)點(diǎn)過(guò)關(guān)培優(yōu)訓(xùn)練∶平行四邊形附答案解析-文庫(kù)吧資料

2025-03-30 22:26本頁(yè)面
  

【正文】 =ME.試題解析:如圖1,延長(zhǎng)EM交AD于點(diǎn)H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如圖1,延長(zhǎng)EM交AD于點(diǎn)H,∵四邊形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,F(xiàn)M=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如圖2,連接AE,∵四邊形ABCD和ECGF是正方形,∴∠FCE=45176?!唷鱌HF∽△PDE,∴,∴PE=2PF.【點(diǎn)睛】此題屬于四邊形的綜合題.考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、相似三角形的判定與性質(zhì)以及勾股定理.注意準(zhǔn)確作出輔助線是解此題的關(guān)鍵.9.在中,BD為AC邊上的中線,過(guò)點(diǎn)C作于點(diǎn)E,過(guò)點(diǎn)A作BD的平行線,交CE的延長(zhǎng)線于點(diǎn)F,在AF的延長(zhǎng)線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,求四邊形BDFG的周長(zhǎng).【答案】(1)證明見解析(2)證明見解析(3)8【解析】【分析】利用平行線的性質(zhì)得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結(jié)論即可得證,設(shè),則,利用菱形的性質(zhì)和勾股定理得到CF、AF和AC之間的關(guān)系,解出x即可.【詳解】證明:,又為AC的中點(diǎn),又,證明:,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設(shè),則,在中,解得:,舍去,菱形BDFG的周長(zhǎng)為8.【點(diǎn)睛】本題考查了菱形的判定與性質(zhì)直角三角形斜邊上的中線,勾股定理等知識(shí),正確掌握這些定義性質(zhì)及判定并結(jié)合圖形作答是解決本題的關(guān)鍵.10.猜想與證明:如圖1,擺放矩形紙片ABCD與矩形紙片ECGF,使B、C、G三點(diǎn)在一條直線上,CE在邊CD上,連接AF,若M為AF的中點(diǎn),連接DM、ME,試猜想DM與ME的關(guān)系,并證明你的結(jié)論.拓展與延伸:(1)若將”猜想與證明“中的紙片換成正方形紙片ABCD與正方形紙片ECGF,其他條件不變,則DM和ME的關(guān)系為  ?。?)如圖2擺放正方形紙片ABCD與正方形紙片ECGF,使點(diǎn)F在邊CD上,點(diǎn)M仍為AF的中點(diǎn),試證明(1)中的結(jié)論仍然成立.【答案】猜想:DM=ME,證明見解析;(2)成立,證明見解析.【解析】試題分析:延長(zhǎng)EM交AD于點(diǎn)H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(1)、延長(zhǎng)EM交AD于點(diǎn)H,根據(jù)ABCD和CEFG為矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根據(jù)Rt△HDE得到HM=DE,則可以得到答案;(2)、連接AE,根據(jù)正方形的性質(zhì)得出∠FCE=45176?!螪PE+∠HPE=90176?!郞F==2,∴EF=;(2)證明:如圖2,過(guò)點(diǎn)P作HP⊥BD交AB于點(diǎn)H,則△HPB為等腰直角三角形,∠HPD=90176。15176?!鰽OF≌△DOE,∴∠AOF=15176?!唷螦OF+∠AOE=90176?!唷螦OE+∠DOE=90176。時(shí),求線段EF的長(zhǎng);(2)如圖2,若Rt△PFE的頂點(diǎn)P在線段OB上移動(dòng)(不與點(diǎn)O、B重合),當(dāng)BD=3BP時(shí),證明:PE=2PF.【答案】(1)①證明見解析,②;(2)證明見解析.【解析】【分析】(1)①根據(jù)正方形的性質(zhì)和旋轉(zhuǎn)的性質(zhì)即可證得:△AOF≌△DOE根據(jù)全等三角形的性質(zhì)證明;②作OG⊥AB于G,根據(jù)余弦的概念求出OF的長(zhǎng),根據(jù)勾股定理求值即可;(2)首先過(guò)點(diǎn)P作HP⊥BD交AB于點(diǎn)H,根據(jù)相似三角形的判定和性質(zhì)求出PE與PF的數(shù)量關(guān)系.【詳解】(1)①證明:∵四邊形ABCD是正方形,∴OA=OD,∠OAF=∠ODE=45176?!嘣赗t△CDF中,由勾股定理得:CF=,∴BF=BCCF=9,由翻折不變性可知,F(xiàn)B=FB′=,∴B′D=DFFB′=.【點(diǎn)睛】四邊形綜合題,考查了矩形的性質(zhì)、翻折變換的性質(zhì)、勾股定理、等腰三角形的判定、平行線的性質(zhì)等知識(shí),解題的關(guān)鍵是靈活運(yùn)用所學(xué)知識(shí)解決問(wèn)題,學(xué)會(huì)利用翻折不變性解決問(wèn)題.8.如圖,在正方形ABCD中,對(duì)角線AC與BD交于點(diǎn)O,在Rt△PFE中,∠EPF=90176。由翻折的性質(zhì)可知,∠DBE=∠EBC=∠DBC=21176?!嗨倪呅蜟DHE是矩形,∴EH=CD=1,DH=CE=2﹣x,EH⊥DG,∴HG=DH=2﹣x,∴AG=2x﹣2,∵EH∥CD,DC∥AB,∴EH∥AF,∴△EHG∽△FAG,∴,∴,∴(舍),③若DG=EG,則∠GDE=∠GED,∵AD∥BC,∴∠GDE=∠DEC,∴∠GED=∠DEC,∵∠C=∠EDF=90176?!郉E⊥DF;(3)假設(shè)存在x的值,使得△DEG是等腰三角形,①若DE=DG,則∠DGE=∠DEG,∵四邊形ABCD是矩形,∴AD∥BC,∠B=90176。如果不存在,說(shuō)明理由【答案】(1)y=﹣2x+4(0<x<2);(2)見解析;(3)存在,x=或或.【解析】【分析】(1)利用待定系數(shù)法可得y與x的函數(shù)表達(dá)式;(2)證明△CDE∽△ADF,得∠ADF=∠CDE,可得結(jié)論;(3)分三種情況:①若DE=DG,則∠DGE=∠DEG,②若DE=EG,如圖①,作EH∥CD,交AD于H,③若DG=EG,則∠GDE=∠GED,分別列方程計(jì)算可得結(jié)論.【詳解】(1)設(shè)y=
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1