freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)培優(yōu)(含解析)之二次函數(shù)含答案-文庫吧資料

2025-03-30 22:26本頁面
  

【正文】 ﹣1,0),∵BE=2ED,∴點E坐標(biāo)(,1),設(shè)直線CE為y=kx+b,把E、C代入得到:,解得:,∴直線CE為,由,解得或,∴點M坐標(biāo)(,).(3)①∵△AGQ,△APR是等邊三角形,∴AP=AR,AQ=AG,∠QAC=∠RAP=60176。10.如圖1,拋物線C1:y=ax2﹣2ax+c(a<0)與x軸交于A、B兩點,與y軸交于點C.已知點A的坐標(biāo)為(﹣1,0),點O為坐標(biāo)原點,OC=3OA,拋物線C1的頂點為G.(1)求出拋物線C1的解析式,并寫出點G的坐標(biāo);(2)如圖2,將拋物線C1向下平移k(k>0)個單位,得到拋物線C2,設(shè)C2與x軸的交點為A′、B′,頂點為G′,當(dāng)△A′B′G′是等邊三角形時,求k的值:(3)在(2)的條件下,如圖3,設(shè)點M為x軸正半軸上一動點,過點M作x軸的垂線分別交拋物線CC2于P、Q兩點,試探究在直線y=﹣1上是否存在點N,使得以P、Q、N為頂點的三角形與△AOQ全等,若存在,直接寫出點M,N的坐標(biāo):若不存在,請說明理由.【答案】(1)拋物線C1的解析式為y=﹣x2+2x+3,點G的坐標(biāo)為(1,4);(2)k=1;(3)M1(,0)、N1(,﹣1);M2(,0)、N2(1,﹣1);M3(4,0)、N3(10,﹣1);M4(4,0)、N4(﹣2,﹣1).【解析】【分析】(1)由點A的坐標(biāo)及OC=3OA得點C坐標(biāo),將A、C坐標(biāo)代入解析式求解可得;(2)設(shè)拋物線C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,′作G′D⊥x軸于點D,設(shè)BD′=m,由等邊三角形性質(zhì)知點B′的坐標(biāo)為(m+1,0),點G′的坐標(biāo)為(1,m),代入所設(shè)解析式求解可得;(3)設(shè)M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),根據(jù)PQ=OA=1且∠AOQ、∠PQN均為鈍角知△AOQ≌△PQN,延長PQ交直線y=﹣1于點H,證△OQM≌△QNH,根據(jù)對應(yīng)邊相等建立關(guān)于x的方程,解之求得x的值從而進(jìn)一步求解即可.【詳解】(1)∵點A的坐標(biāo)為(﹣1,0),∴OA=1,∴OC=3OA,∴點C的坐標(biāo)為(0,3),將A、C坐標(biāo)代入y=ax2﹣2ax+c,得:,解得:,∴拋物線C1的解析式為y=﹣x2+2x+3=﹣(x﹣1)2+4,所以點G的坐標(biāo)為(1,4);(2)設(shè)拋物線C2的解析式為y=﹣x2+2x+3﹣k,即y=﹣(x﹣1)2+4﹣k,過點G′作G′D⊥x軸于點D,設(shè)BD′=m,∵△A′B′G′為等邊三角形,∴G′D=B′D=m,則點B′的坐標(biāo)為(m+1,0),點G′的坐標(biāo)為(1,m),將點B′、G′的坐標(biāo)代入y=﹣(x﹣1)2+4﹣k,得:,解得:(舍),∴k=1;(3)設(shè)M(x,0),則P(x,﹣x2+2x+3)、Q(x,﹣x2+2x+2),∴PQ=OA=1,∵∠AOQ、∠PQN均為鈍角,∴△AOQ≌△PQN,如圖2,延長PQ交直線y=﹣1于點H,則∠QHN=∠OMQ=90176?!螪PE=∠MPN=90176?!堞隆?0176。時,OC=OE=3,∴﹣3a=3,∴a=﹣1,當(dāng)β=60176?!堞隆?0176。即OM為y=x,若∠AOM=∠CBA,則OM為y=3x+3,然后由直線解析式可求OM與AD的交點M.【詳解】(1)把A(﹣3,0),B(1,0),C(0,3)代入拋物線解析式y(tǒng)=ax2+bx+c得,解得,所以拋物線的函數(shù)表達(dá)式為y=﹣x2﹣2x+3.(2)如解(2)圖1,過P點作PQ平行y軸,交AC于Q點,∵A(﹣3,0),C(0,3),∴直線AC解析式為y=x+3,設(shè)P點坐標(biāo)為(x,﹣x2﹣2x+3.),則Q點坐標(biāo)為(x,x+3),∴PQ=﹣x2﹣2x+3﹣(x+3)=﹣x2﹣3x.∴S△PAC=,∴,解得:x1=﹣1,x2=﹣2.當(dāng)x=﹣1時,P點坐標(biāo)為(﹣1,4),當(dāng)x=﹣2時,P點坐標(biāo)為(﹣2,3),綜上所述:若△PAC面積為3,點P的坐標(biāo)為(﹣1,4)或(﹣2,3),(3)如解(3)圖1,過D點作DF垂直x軸于F點,過A點作AE垂直BC于E點,∵D為拋物線y=﹣x2﹣2x+3的頂點,∴D點坐標(biāo)為(﹣1,4),又∵A(﹣3,0),∴直線AC為y=2x+4,AF=2,DF=4,tan∠PAB=2,∵B(1,0),C(0,3)∴tan∠ABC=3,BC=,sin∠ABC=,直線BC解析式為y=﹣3x+3.∵AC=4,∴AE=AC?sin∠ABC==,BE=,∴CE=,∴tan∠ACB=,∴tan∠ACB=tan∠PAB=2,∴∠ACB=∠PAB,∴使得以M,A,O為頂點的三角形與△ABC相似,則有兩種情況,如解(3)圖2Ⅰ.當(dāng)∠AOM=∠CAB=45176?!郌坐標(biāo)(1,)或(1,﹣)②當(dāng)DF=BD時,m=2177。(3,1),∵C(﹣1,3),∴直線A39。HB(AAS),∵A(1,﹣1),B(2,0)∴AG=1,BG=OG=1,∴BH=1,A39。關(guān)于直線BC對稱,AB=A39。H垂直x軸于點H,設(shè)二次函數(shù)對稱軸于x軸交于點G.∵∠BCE=∠ACB,∠ABC=90176。過A39。(3,1),然后求出A39。作A39?!螩EF=∠PEM,∴△EFC∽△EMP,∴,∴MP=3ME.∵點P的橫坐標(biāo)為t,∴P(t,﹣t2﹣2t+3).∵P在第二象限,∴PM=﹣t2﹣2t+3,ME=﹣1﹣t,t<0,∴﹣t2﹣2t+3=3(﹣1﹣t),解得:t1=﹣2,t2=3(與t<0矛盾,舍去).當(dāng)t=﹣2時,y=﹣(﹣2)2﹣2(﹣2)+3=3,∴P(﹣2,3).綜上所述:當(dāng)△CEF與△COD相似時,P點的坐標(biāo)為(﹣1,4)或(﹣2,3).【點睛】本題是二次函數(shù)綜合題.解(1)的關(guān)鍵是利用旋轉(zhuǎn)的性質(zhì)得出OC,OD的長,又利用了待定系數(shù)法;解(2)的關(guān)鍵是利用相似三角形的性質(zhì)得出MP=3ME.6.童裝店銷售某款童裝,每件售價為60元,每星期可賣100件,為了促銷該店決定降價銷售,經(jīng)市場調(diào)查發(fā)現(xiàn):每降價1元,每星期可多賣10件,已知該款童裝每件成本30元,設(shè)降價后該款童裝每件售價元,每星期的銷售量為件.(1)降價后,當(dāng)某一星期的銷售量是未降價前一星期銷售量的3倍時,求這一星期中每件童裝降價多少元?(2)當(dāng)每件售價定為多少元時,一星期的銷售利潤最大,最大利潤是多少?【答案】(1)這一星期中每件童裝降價20元;(2)每件售價定為50元時,一星期的銷售利潤最大,最大利潤4000元.【解析】【分析】(1)根據(jù)售量與售價x(元/件)之間的關(guān)系列方程即可得到結(jié)論.(2)設(shè)每星期利潤為W元,構(gòu)建二次函數(shù)利用二次函數(shù)性質(zhì)解決問題.【詳解】解:(1)根據(jù)題意得,(60﹣x)10+100=3100,解得:x=40,60﹣40=20元,答:這一星期中每件童裝降價20元;(2)設(shè)利潤為w,根據(jù)題意得,w=(x﹣30)[(60﹣x)10+100]=﹣10x2+1000x﹣21000=﹣10(x﹣50)2+4000,答:每件售價定為50元時,一星期的銷售利潤最大,最大利潤4000元.【點睛】本題考查二次函數(shù)的應(yīng)用,一元二次不等式,解題的關(guān)鍵是構(gòu)建二次函數(shù)解決最值問題,利用圖象法解一元二次不等式,屬于中考??碱}型.
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1