freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx初三數(shù)學一模試題分類匯編——二次函數(shù)綜合含答案-文庫吧資料

2025-03-30 22:23本頁面
  

【正文】 C=2,點B的坐標為(1,0).拋物線y=﹣x2+bx+c經(jīng)過A、B兩點.(1)求拋物線的解析式;(2)點P是直線AB上方拋物線上的一點,過點P作PD垂直x軸于點D,交線段AB于點E,使PE=DE.①求點P的坐標;②在直線PD上是否存在點M,使△ABM為直角三角形?若存在,求出符合條件的所有點M的坐標;若不存在,請說明理由.【答案】(1)y=﹣x2﹣3x+4;(2)①P(﹣1,6),②存在,M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【解析】【分析】(1)先根據(jù)已知求點A的坐標,利用待定系數(shù)法求二次函數(shù)的解析式;(2)①先得AB的解析式為:y=2x+2,根據(jù)PD⊥x軸,設P(x,x23x+4),則E(x,2x+2),根據(jù)PE=DE,列方程可得P的坐標;②先設點M的坐標,根據(jù)兩點距離公式可得AB,AM,BM的長,分三種情況:△ABM為直角三角形時,分別以A、B、M為直角頂點時,利用勾股定理列方程可得點M的坐標.【詳解】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(﹣2,0),Rt△ABC中,tan∠ABC=2,∴, ∴, ∴AC=6,∴A(﹣2,6),把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,解得:,∴拋物線的解析式為:y=﹣x2﹣3x+4;(2)①∵A(﹣2,6),B(1,0),∴AB的解析式為:y=﹣2x+2, 設P(x,﹣x2﹣3x+4),則E(x,﹣2x+2),∵PE=DE, ∴﹣x2﹣3x+4﹣(﹣2x+2)=(﹣2x+2),∴x=1或1(舍), ∴P(﹣1,6);②∵M在直線PD上,且P(﹣1,6),設M(﹣1,y), ∵B(1,0),A(﹣2,6)∴AM2=(﹣1+2)2+(y﹣6)2=1+(y﹣6)2,BM2=(1+1)2+y2=4+y2, AB2=(1+2)2+62=45,分三種情況:i)當∠AMB=90176。若△PDE為等腰直角三角形,則∠EDP=45176?!郉H∥AO,∵OA=OB=6,∴∠BDH=∠BAO=45176。知若△PDE為等腰直角三角形,則∠EDP=45176。20202021初三數(shù)學一模試題分類匯編——二次函數(shù)綜合含答案一、二次函數(shù)1.已知:如圖,拋物線y=ax2+bx+c與坐標軸分別交于點A(0,6),B(6,0),C(﹣2,0),點P是線段AB上方拋物線上的一個動點.(1)求拋物線的解析式;(2)當點P運動到什么位置時,△PAB的面積有最大值?(3)過點P作x軸的垂線,交線段AB于點D,再過點P做PE∥x軸交拋物線于點E,連結(jié)DE,請問是否存在點P使△PDE為等腰直角三角形?若存在,求出點P的坐標;若不存在,說明理由.【答案】(1)拋物線解析式為y=﹣x2+2x+6;(2)當t=3時,△PAB的面積有最大值;(3)點P(4,6).【解析】【分析】(1)利用待定系數(shù)法進行求解即可得;(2)作PM⊥OB與點M,交AB于點N,作AG⊥PM,先求出直線AB解析式為y=﹣x+6,設P(t,﹣t2+2t+6),則N(t,﹣t+6),由S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?OB列出關(guān)于t的函數(shù)表達式,利用二次函數(shù)的性質(zhì)求解可得;(3)由PH⊥OB知DH∥AO,據(jù)此由OA=OB=6得∠BDH=∠BAO=45176。結(jié)合∠DPE=90176。從而得出點E與點A重合,求出y=6時x的值即可得出答案.【詳解】(1)∵拋物線過點B(6,0)、C(﹣2,0),∴設拋物線解析式為y=a(x﹣6)(x+2),將點A(0,6)代入,得:﹣12a=6,解得:a=﹣,所以拋物線解析式為y=﹣(x﹣6)(x+2)=﹣x2+2x+6;(2)如圖1,過點P作PM⊥OB與點M,交AB于點N,作AG⊥PM于點G,設直線AB解析式為y=kx+b,將點A(0,6)、B(6,0)代入,得:,解得:,則直線AB解析式為y=﹣x+6,設P(t,﹣t2+2t+6)其中0<t<6,則N(t,﹣t+6),∴PN=PM﹣MN=﹣t2+2t+6﹣(﹣t+6)=﹣t2+2t+6+t﹣6=﹣t2+3t,∴S△PAB=S△PAN+S△PBN=PN?AG+PN?BM=PN?(AG+BM)=PN?OB=(﹣t2+3t)6=﹣t2+9t=﹣(t﹣3)2+,∴當t=3時,△PAB的面積有最大值;(3)如圖2,∵PH⊥OB于H,∴∠DHB=∠AOB=90176?!逷E∥x軸、PD⊥x軸,∴∠DPE=90176。∴∠EDP與∠BDH互為對頂角,即點E與點A重合,則當y=6時,﹣x2+2x+6=6,解得:x=0(舍)或x=4,即點P(4,6).【點睛】本題考查了二次函數(shù)的綜合問題,涉及到待定系數(shù)法、二次函數(shù)的最值、等腰直角三角形的判定與性質(zhì)等,熟練掌握和靈活運用待定系數(shù)法求函數(shù)解析式、二次函數(shù)的性質(zhì)、等腰直角三角形的判定與性質(zhì)等是解題的關(guān)鍵.2.(10分)(2015?佛山)如圖,一小球從斜坡O點處拋出,球的拋出路線可以用二次函數(shù)y=﹣x2+4x刻畫,斜坡可以用一次函數(shù)y=x刻畫.(1)請用配方法求二次函數(shù)圖象的最高點P的坐標;(2)小球的落點是A,求點A的坐標;(3)連接拋物線的最高點P與點O、A得△POA,求△POA的面積;(4)在OA上方的拋物線上存在一點M(M與P不重合),△MOA的面積等于△POA的面積.請直接寫出點M的坐標.【答案】(1)(2,4);(2)(,);(3);(4)(,).【解析】試題分析:(1)利用配方法拋物線的一般式化為頂點式,即可求出二次函數(shù)圖象的最高點P的坐標;(2)聯(lián)立兩解析式,可求出交點A的坐標;(3)作PQ⊥x軸于點Q,AB⊥x軸于點B.根據(jù)S△POA=S△POQ+S△梯形PQBA﹣S△BOA,代入數(shù)值計算即可求解;(4)過P作OA的平行線,交拋物線于點M,連結(jié)OM、AM,由于兩平行線之間的距離相等,根據(jù)同底等高的兩個三角形面積相等,可得△MOA的面積等于△POA的面積.設直線PM的解析式為y=x+b,將P(2,4)代入,求出直線PM的解析式為y=x+3.再與拋物線的解析式聯(lián)立,得到方程組,解方程組即可求出點M的坐標.試題解析:(1)由題意得,y=﹣x2+4x=﹣(x﹣2)2+4,故二次函數(shù)圖象的最高點P的坐標為(2,4);(2)聯(lián)立兩解析式可得:,解得:,或.故可得點A的坐標為(,);(3)如圖,作PQ⊥x軸于點Q,AB⊥x軸于點B.S△POA=S△POQ+S△梯形PQBA﹣S△BOA=24+(+4)(﹣2)﹣=4+﹣=;(4)過P作OA的平行線,交拋物線于點M,連結(jié)OM、AM,則△MOA的面積等于△POA的面積.設直線PM的解析式為y=x+b,∵P的坐標為(2,4),∴4=2+b,解得b=3,∴直線PM的解析式為y=x+3.由,解得,∴點M的坐標為(,).考點:二次函數(shù)的綜合題3.如圖,在平面直角坐標系中,∠ACB=90176。時,有AM2+BM2=AB2,∴1+(y﹣6)2+4+y2=45, 解得:y=3,∴M(﹣1,3+)或(﹣1,3﹣);ii)當∠ABM=90176。時,有AM2+AB2=BM2,∴1+(y﹣6)2+45=4+y2, ∴y=,∴M(﹣1,);綜上所述,點M的坐標為:∴M(﹣1,3+)或(﹣1,3﹣)或(﹣1,﹣1)或(﹣1,).【點睛】此題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,鉛直高度和勾股定理的運用,直角三角形的判定等知識.此題難度適中,解題的關(guān)鍵是注意方程思想與分類討論思想的應用.4.函數(shù)的圖象記為,函數(shù)的圖象記為,其中為常數(shù),與合起來的圖象記為.(Ⅰ)
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1