【摘要】第一篇:立體幾何線面平行問題 線線問題及線面平行問題 一、知識點11)相交——有且只有一個公共點;(2)平行——在同一平面內(nèi),沒有公共點;(3)異面——不在任何一個平面內(nèi),沒有公共點;.. :推...
2024-11-09 12:02
【摘要】立體幾何空間點、線、面的位置關(guān)系1.五種位置關(guān)系,用相應(yīng)的數(shù)學(xué)符號表示(1)點與線的位置關(guān)系:點A在直線l上;點B不在直線l上(2)點與面的位置關(guān)系:點A在平面內(nèi);點B在平面外(3)直線與直線的位置關(guān)系:a與b平行;a與b相交于點O(4)直線與平面的
2025-06-22 17:08
【摘要】A1ED1C1B1DCBA1、如圖,在正方體中,是的中點,求證:平面。2、ABCD-A1B1C1D1是正四棱柱,E是棱BC的中點。求證:BD1//平面C1DE3、四棱錐P-ABCD中,底面ABCD是矩形,M、N分別是AB、PC的中點,求證:MN∥平面PA
2025-03-28 06:43
【摘要】第一篇:立體幾何三視圖及線面平行經(jīng)典練習(xí) 立體幾何三視圖 例 1、若某空間幾何體的三視圖如圖所示,則該幾何體的體積是 ()(A)2(B)1(C)231(D) 3例 2、一個幾何體的三視圖如...
2024-11-16 23:04
【摘要】第一篇:高中立體幾何中線面平行的常見方法 高中立體幾何證明平行的專題訓(xùn)練 立體幾何中證明線面平行或面面平行都可轉(zhuǎn)化為線線平行,而證明線線平行一般有以下的一些方法: (1)通過“平移”。 (2)...
2024-11-16 23:32
【摘要】第一篇:立體幾何的平行與證明問題 立體幾何 1.知識網(wǎng)絡(luò) 一、經(jīng)典例題剖析 考點一點線面的位置關(guān)系 1、設(shè)l是直線,a,β是兩個不同的平面() A.若l∥a,l∥β,則a∥βB.若l∥a,...
【摘要】?重點難點?重點:線面、面面平行的判定定理與性質(zhì)定理及應(yīng)用?難點:定理的靈活運用?知識歸納?一、直線與平面平行?1.判定方法?(1)用定義:直線與平面無公共點.(2)判定定理:?????a?αb?αa∥b?a∥α(3)其它方法
2025-05-17 12:46
【摘要】立體幾何證明平行專題訓(xùn)練命題:***1.如圖,四棱錐P-ABCD的底面是平行四邊形,點E、F分別為棱AB、PD的中點.求證:AF∥平面PCE;(第1題圖)2、如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點,現(xiàn)將△ADE沿AE折疊,使得D
2025-03-28 06:44
【摘要】第一篇:立體幾何證明問題 證明問題 ,E、F分別是長方體邊形 .-的棱A、C的中點,求證:四邊形是平行四 ,ABCD為正方形,SA⊥平面ABCD,過點A且垂直于SC的平面分別交SB、SC、SD...
2024-10-14 10:12
【摘要】立體幾何大題訓(xùn)練(1)1、如圖,三棱柱ABC-A1B1C1的底面是邊長為2的等邊三角形,AA1⊥底面ABC,點E,F(xiàn)分別是棱CC1,BB1上的點,且EC=B1F=2FB.(1)證明:平面AEF⊥平面ACC1A1;(2)若AA1=3,求直線AB與平面AEF所成角的正弦值.2、如圖,在四棱錐中,平
【摘要】第一篇:專題二:立體幾何---線面垂直、面面垂直匯總 專題二:立體幾何---線面垂直、面面垂直 一、知識點 (1)線面垂直性質(zhì)定理 (2)線面垂直判定定理 (3)面面垂直性質(zhì)定理 (2)面...
2024-11-03 17:09
【摘要】第一篇:2013屆高三數(shù)學(xué)專題——立體幾何(二)線面平行與垂直 2013屆高三數(shù)學(xué)專題——立體幾何 (二)線面平行與垂直 一、定理內(nèi)容(數(shù)學(xué)語言) (1)證明線面平行 (2)證明面面平行 ...
2024-11-16 01:14
【摘要】立體幾何平行證明題二、平面與平面平行:)//,:(//::1??????????則若用符號表示為記為平行與平面則稱平面沒有公共點與平面平面定義???,、2、判定方法??????????////////:??????????或其它方法aa②baba,、///
2025-08-08 09:40
【摘要】同步練習(xí)第I卷(選擇題),是三個不同平面,則下列命題正確的是().A、若∥∥,則∥B、若,則∥C、若∥∥,則∥D、若,則∥,是三個不同的平面,則下列命題中正確的是()A.,則B.,則C.,則D.,則、n為兩條不同的直線,、為兩個不同的平面,下列命題中正
【摘要】ZPZ空間“角度”問題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個面的
2025-08-08 10:54