freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

函數(shù)的單調(diào)性證明(參考版)

2024-11-04 01:37本頁面
  

【正文】 1時(shí),f(x)>(1)求證:f(x)是單調(diào)遞增函數(shù)(2)求f(x)在[2,2]、定義在R上的函數(shù)f(x)恒為正,且滿足f(x+y)=f(x)f(y),當(dāng)x>0時(shí),f(x)>1.(1)證明:f(x)(2)若函數(shù)f(x)的定義域?yàn)閇1,1]時(shí),解不等式fx1>f(2x)()函數(shù)f(x)的定義域?yàn)镽,對(duì)于任意的a、b∈R皆有f(a)+f(b)=f(a+b)+1,且x>0時(shí),f(x)>1(1)求證:f(x)是R上的增函數(shù)2(2)若f(4)=5,解不等式f3mm2<3()3。=0,當(dāng)x232。1246。:f(x)在(0,+∞):已知函數(shù)f(x)對(duì)于任意的x、y∈R,f(x)+f(y)=f(x+y),且當(dāng)x>0時(shí),f(x)<0;f(1)=(x)>f(x)>總有(1)求證:f(x)在R上是減函數(shù)(2)求f(x)在[3,3]上的最大值與最小值已知函數(shù)f(x)的定義域?yàn)镽,且m、n∈R,恒有f(m)+f(n)=f(m+n)+1,且f231。)單調(diào)遞增 練習(xí):證明函數(shù)f(x)=x+(a>0)在(a,討論函數(shù)f(x)=1+xx的單調(diào)性2ax(二)f(x)抽象函數(shù)的單調(diào)性:抽象函數(shù)的單調(diào)性關(guān)鍵是抽象函數(shù)關(guān)系式的運(yùn)用,同時(shí),要注意選擇作差還是作商,這一點(diǎn)可觀察題意中與0比較,應(yīng)作差;與1比較,應(yīng)作商。)時(shí)單調(diào)遞增 例3:證明:函數(shù)f(x)=x1在x∈2例4:討論函數(shù)f(x)=x+1在(1,+165。在做差比較時(shí),我們常將差化為積討論,常用因式分解(整式)、通分(分式)、有理化(無理式)、配方等手段。,0),\f(x1)0,g(x2)0.\F(x1)F(x2)0即F(x1)F(x2)\F(x):此題涉及抽象函數(shù)的有關(guān)證明,要求較高,此外在F(x1)F(x2)的變形中涉及到增減項(xiàng)的技巧,它也應(yīng)是源于單調(diào)性只能比較同一個(gè)函數(shù)的某兩個(gè)函數(shù)值,必須構(gòu)造出f(x1)與f(x2)的差和g(x1)與g(x2)的差.第五篇:專題:函數(shù)單調(diào)性的證明函數(shù)單調(diào)性的證明函數(shù)的單調(diào)性需抓住單調(diào)性定義來證明,這是目前高一階段唯一的方法。,0),在R上f(x)是增函數(shù)而g(x)是減函數(shù),求證:F(x)=f(x)g(x)::設(shè)x1,x2是R上的任意兩個(gè)實(shí)數(shù),且x1x2,則F(x1)F(x2)=f(x1)g(x1)f(x2)g(x2)=f(x1)g(x1)f(x1)g(x2)+f(x1)g(x2)f(x2)g(x2)=f(x1)[g(x1)g(x2)]+g(x2)[f(x1)f(x2)]Qf(x)是R上的增函數(shù),g(x)是R上的減函數(shù),且x1x2.\f(x1)f(x2),g(x1)g(x2)即f(x1)f(x2)0,g(x1)g(x2)(x)的值域?yàn)?0,+165。教學(xué)中,教師引導(dǎo)學(xué)生用嚴(yán)格的數(shù)學(xué)符號(hào)語言歸納、抽象增函數(shù)的定義,,:判斷題:①②若函數(shù)③若函數(shù)滿足f(2)和(2,3)上均為增函數(shù),則函數(shù)在(1,3)上為增函數(shù).④,所以在上是通過對(duì)判斷題的討論,強(qiáng)調(diào)三點(diǎn):①單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,離開了定義域和相應(yīng)區(qū)間就談不上單調(diào)性. ②有的函數(shù)在整個(gè)定義域內(nèi)單調(diào)(如一次函數(shù)),有的函數(shù)只在定義域內(nèi)的某些區(qū)間單調(diào)(如二次函數(shù)),有的函數(shù)根本沒有單調(diào)區(qū)間(如常函數(shù)).③函數(shù)在定義域內(nèi)的兩個(gè)區(qū)間A,B上都是增(或減)函數(shù),一般不能認(rèn)為函數(shù)在上是增(或減)函數(shù).從而加深學(xué)生對(duì)定義的理解北京4中常規(guī)備課【教學(xué)目標(biāo)】1.使學(xué)生從形與數(shù)兩方面理解函數(shù)單調(diào)性的概念,初步掌握利用函數(shù)圖象和單調(diào)性定義判斷、證明函數(shù)單調(diào)性的方法.2.通過對(duì)函數(shù)單調(diào)性定義的探究,滲透數(shù)形結(jié)合數(shù)學(xué)思想方法,培養(yǎng)學(xué)生觀察、歸納、抽象的能力和語言表達(dá)能力;通過對(duì)函數(shù)單調(diào)性的證明,提高學(xué)生的推理論證能力.3.通過知識(shí)的探究過程培養(yǎng)學(xué)生細(xì)心觀察、認(rèn)真分析、嚴(yán)謹(jǐn)論證的良好思維習(xí)慣,讓學(xué)生經(jīng)歷從具體到抽象,從特殊到一般,從感性到理性的認(rèn)知過程.【教學(xué)重點(diǎn)】 函數(shù)單調(diào)性的概念、判斷及證明.【教學(xué)難點(diǎn)】 歸納抽象函數(shù)單調(diào)性的定義以及根據(jù)定義證明函數(shù)的單調(diào)性. 【教學(xué)方法】 教師啟發(fā)講授,學(xué)生探究學(xué)習(xí). 【教學(xué)手段】 計(jì)算機(jī)、投影儀. 【教學(xué)過程】一、創(chuàng)設(shè)情境,引入課題 課前布置任務(wù):(1)由于某種原因,2008年北京奧運(yùn)會(huì)開幕式時(shí)間由原定的7月25日推遲到8月8日,請查閱資料說明做出這個(gè)決定的主要原因.(2),可以了解到開幕式推遲主要是天氣的原因,北京的天氣到8月中旬,平均氣溫、平均降雨量和平均降雨天數(shù)等均開始下降,捕捉信息,啟發(fā)學(xué)生思考. 問題:觀察圖形,能得到什么信息?預(yù)案:(1)當(dāng)天的最高溫度、最低溫度以及何時(shí)達(dá)到;(2)在某時(shí)刻的溫度;(3)某些時(shí)段溫度升高,我們關(guān)心很多數(shù)據(jù)的變化規(guī)律,了解這些數(shù)據(jù)的變化規(guī)律,對(duì)我們的生活是很有幫助的.問題:還能舉出生活中其他的數(shù)據(jù)變化情況嗎? 預(yù)案:水位高低、燃油價(jià)格、股票價(jià)格等.歸納:用函數(shù)觀點(diǎn)看,其實(shí)就是隨著自變量的變化,函數(shù)值是變大還是變小. 〖設(shè)計(jì)意圖〗由生活情境引入新課,激發(fā)興趣.二、歸納探索,形成概念對(duì)于自變量變化時(shí),函數(shù)值是變大還是變小,初中同學(xué)們就有了一定的認(rèn)識(shí),但是沒有嚴(yán)格的定義,.借助圖象,直觀感知問題1:分別作出函數(shù)數(shù)值有什么變化規(guī)律? 的圖象,并且觀察自變量變化時(shí),函預(yù)案:(1)函數(shù)在整個(gè)定義域內(nèi) y隨x的增大而增大;函數(shù)在整個(gè)定義域內(nèi) y隨x的增大而減?。?2)函數(shù)在上 y隨x的增大而增大,在上y隨x的增大而減?。?3)函數(shù) 在上 y隨x的增大而減小,在上y隨x的增大而減?。龑?dǎo)學(xué)生進(jìn)行分類描述(增函數(shù)、減函數(shù)).同時(shí)明確函數(shù)的單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,是函數(shù)的局部性質(zhì).問題2:能不能根據(jù)自己的理解說說什么是增函數(shù)、減函數(shù)? 預(yù)案:如果函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y也越來越大,我們說函數(shù)在某個(gè)區(qū)間上隨自變量x的增大,y越來越小,我們在該區(qū)間上為增函數(shù);如果函數(shù)說函數(shù)在該區(qū)間上為減函數(shù).教師指出:這種認(rèn)識(shí)是從圖象的角度得到的,是對(duì)函數(shù)單調(diào)性的直觀,描述性的認(rèn)識(shí). 【設(shè)計(jì)意圖】從圖象直觀感知函數(shù)單調(diào)性,完成對(duì)函數(shù)單調(diào)性的第一次認(rèn)識(shí). 2.探究規(guī)律,理性認(rèn)識(shí)問題1:下圖是函數(shù)和減函數(shù)嗎? 的圖象,能說出這個(gè)函數(shù)分別在哪個(gè)區(qū)間為增函數(shù)學(xué)生的困難是難以確定分界點(diǎn)的確切位置.通過討論,使學(xué)生感受到用函數(shù)圖象判斷函數(shù)單調(diào)性雖然比較直觀,但有時(shí)不夠精確,需要結(jié)合解析式進(jìn)行嚴(yán)密化、精確化的研究.〖設(shè)計(jì)意圖〗使學(xué)生體會(huì)到用數(shù)量大小關(guān)系嚴(yán)格表述函數(shù)單調(diào)性的必要性. 問題2:如何從解析式的角度說明在為增函數(shù)?22預(yù)案:(1)在給定區(qū)間內(nèi)取兩個(gè)數(shù),例如1和2,因?yàn)?(2)仿(1),取很多組驗(yàn)證均滿足,所以(3)任取,所以在,因?yàn)闉樵龊瘮?shù).在為增函數(shù).在,即對(duì)于學(xué)生錯(cuò)誤的回答,引導(dǎo)學(xué)生分別用圖形語言和文字語言進(jìn)行辨析,使學(xué)生認(rèn)識(shí)到問題的根源在于自變量不可能被窮舉,從而引導(dǎo)學(xué)生在給定的區(qū)間內(nèi)任意取兩個(gè)自變量.【設(shè)計(jì)意圖】把對(duì)單調(diào)性的認(rèn)識(shí)由感性上升到理性認(rèn)識(shí)的高度,完成對(duì)概念的第二次認(rèn)識(shí).事實(shí)上也給出了證明單調(diào)性的方法,.抽象思維,形成概念問題:你能用準(zhǔn)確的數(shù)學(xué)符號(hào)語言表述出增函數(shù)的定義嗎?師生共同探究,得出增函數(shù)嚴(yán)格的定義,然后學(xué)生類比得出減函數(shù)的定義.(1)板書定義(2)鞏固概念 判斷題:①.②若函數(shù)③若函數(shù) 在區(qū)間和(2,3)上均為增函數(shù),則函數(shù)在區(qū)間(1,3)上為增函.④,所以在通過判斷題,強(qiáng)調(diào)三點(diǎn):①單調(diào)性是對(duì)定義域內(nèi)某個(gè)區(qū)間而言的,離開了定義域和相應(yīng)區(qū)間就談不上單調(diào)性. ②對(duì)于某個(gè)具體函數(shù)的單調(diào)區(qū)
點(diǎn)擊復(fù)制文檔內(nèi)容
語文相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1