freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

23等差數(shù)列的前n項和說課稿(參考版)

2024-10-25 04:20本頁面
  

【正文】 【教學(xué)反思】“等差數(shù)列前n項和”的推導(dǎo)不只一種方法,本節(jié)課是通過介紹高斯的算法,探究這種方法如何推廣到一般等差數(shù)列的求和.該方法反映了等差數(shù)列的本質(zhì),可以進一步促進學(xué)生對等差數(shù)列性質(zhì)的理解,而且該推導(dǎo)過程體現(xiàn)了人類研究、解決問題的一般思路.本節(jié)課教學(xué)過程的難點在于如何獲得推導(dǎo)公式的“倒序相加法”這一思路.為了突破這一難點,在教學(xué)中采用了以問題驅(qū)動的教學(xué)方法,設(shè)計的問題體現(xiàn)了分析、解決問題的一般思路,即從特殊問題的解決中提煉方法,再試圖運用這一方法解決一般問題.在教學(xué)過程中,通過教師的層層引導(dǎo)、學(xué)生的合作學(xué)習(xí)與自主探究,尤其是借助圖形的直觀性,學(xué)生“倒序相加法”思路的獲得就水到渠成了.《等差數(shù)列前n項和》教學(xué)設(shè)計二設(shè)計人:楊峰爍教材分析等差數(shù)列的前n項和是數(shù)列的重要內(nèi)容,也是數(shù)列研究的基本問題.在現(xiàn)實生活中,等差數(shù)列的求和是經(jīng)常遇到的一類問題.等差數(shù)列的求和公式,為我們求等差數(shù)列的前n項和提供了一種重要方法. 教材首先通過具體的事例,探索歸納出等差數(shù)列前n項和的求法,接著推廣到一般情況,推導(dǎo)出等差數(shù)列的前n項和公式.為深化對公式的理解,通過對具體例子的研究,弄清等差數(shù)列的前n項和與等差數(shù)列的項、項數(shù)、公差之間的關(guān)系,并能熟練地運用等差數(shù)列的前n項和公式解決問題.這節(jié)內(nèi)容重點是探索掌握等差數(shù)列的前n項和公式,并能應(yīng)用公式解決一些實際問題,難點是前n項和公式推導(dǎo)思路的形成. 教學(xué)目標(biāo),讓學(xué)生體驗數(shù)學(xué)公式產(chǎn)生、形成的過程,培養(yǎng)學(xué)生抽象概括能力.,體會等差數(shù)列的前n項和與二次函數(shù)之間的聯(lián)系,并能用公式解決一些實際問題,培養(yǎng)學(xué)生對數(shù)學(xué)的理解能力和邏輯推理能力.,培養(yǎng)學(xué)生的探究能力、創(chuàng)新能力和科學(xué)的思維方法. 任務(wù)分析這節(jié)內(nèi)容主要涉及等差數(shù)列的前n項公式及其應(yīng)用.對公式的推導(dǎo),為便于學(xué)生理解,采取從特殊到一般的研究方法比較適宜,如從歷史上有名的求和例子1+2+3+……+100的高斯算法出發(fā),一方面引發(fā)學(xué)生對等差數(shù)列求和問題的興趣,另一方面引導(dǎo)學(xué)生發(fā)現(xiàn)等差數(shù)列中任意的第k項與倒數(shù)第k項的和等于首項與末項的和這個規(guī)律,進而發(fā)現(xiàn)求等差數(shù)列前n項和的一般方法,這樣自然地過渡到一般等差數(shù)列的求和問題.對等差數(shù)列的求和公式,要引導(dǎo)學(xué)生認(rèn)識公式本身的結(jié)構(gòu)特征,弄清前n項和與等差數(shù)列的項、項數(shù)、公差之間的關(guān)系.為加深對公式的理解和運用,要強化對實例的教學(xué),并通過對具體實例的分析,引導(dǎo)學(xué)生學(xué)會解決問題的方法.特別是對實際問題,要引導(dǎo)學(xué)生從實際情境中發(fā)現(xiàn)等差數(shù)列的模型,恰當(dāng)選擇公式.對于等差數(shù)列前n項和公式和二次函數(shù)之間的聯(lián)系,可引導(dǎo)學(xué)生拓展延伸. 教學(xué)設(shè)計一、問題情景,有個10歲的名叫高斯的孩子,在老師提出問題:“1+2+3+…+100=?”時,很快地就算出了結(jié)果.他是怎么算出來的呢?他發(fā)現(xiàn)1+100=2+99=3+97=…=50+51=101,于是1+2+…+100=10150=5050.,你能否求出1+2+3+…+n的和. ?這種方法能否推廣到求一般等差數(shù)列的前n項和?二、建立模型對于數(shù)列{an},我們稱a1+a2+…+an為數(shù)列{an}的前n項和,用Sn表示,即Sn=a1+a2+…+an. (1)如何用高斯算法來推導(dǎo)等差數(shù)列的前n項和公式? 對于公差為d的等差數(shù)列{an}:Sn=a1+(a1+d)+(a1+2d)+…+[a1+(n—1)d],①依據(jù)高斯算法,將Sn表示為Sn=an+(an—d)+(an—2d)+…+[an—(n—1)d].②由此得到等差數(shù)列的前n項和公式小結(jié):這種方法稱為反序相加法,是數(shù)列求和的一種常用方法.(2)結(jié)合通項公式an=a1+(n—1)d,又能得怎樣的公式?(3)兩個公式有什么相同點和不同點,各反映了等差數(shù)列的什么性質(zhì)?學(xué)生討論后,教師總結(jié):相同點是利用二者求和都須知道首項a1和項數(shù)n;不同點是前者還須要知道an,后者還須要知道d.因此,在應(yīng)用時要依據(jù)已知條件合適地選取公式.公式本身也反映了等差數(shù)列的性質(zhì):前者反映了等差數(shù)列的任意的第k項與倒數(shù)第k項的和都等于首、末兩項之和,后者反映了等差數(shù)的前n項和是關(guān)于n的沒有常數(shù)項的“二次函數(shù)”.三、解釋應(yīng)用 [例 題],求相應(yīng)的等差數(shù)列{an}的前n項和Sn.(1)a1= —4,a8= —18,n=8.(2)a1=14.5,d=,an=32. 注:恰當(dāng)選用公式進行計算.{an}前10項的和是310,前20項的和是1220.由這些條件能確定這個等差數(shù)列的前n項和的公式嗎? 分析:將已知條件代入等差數(shù)列前n項和的公式后,可得到兩個關(guān)于a1與d的關(guān)系式,它們都是關(guān)于a1與d的二元一次方程,由此可以求得a1與d,從而得到所求前n項和的公式. 解:由題意知注:(1)教師引導(dǎo)學(xué)生認(rèn)識到等差數(shù)列前n項和公式,就是一個關(guān)于an,a1,n或者a1,n,d的方程,使學(xué)生能把方程思想和前n項和公式相結(jié)合,再結(jié)合通項公式,對a1,d,n,an及Sn這五個量知其三便可求其二.(2)本題的解法還有很多,教學(xué)時可鼓勵學(xué)生探索其他的解法.例如,《關(guān)于在中小學(xué)實施“校校通”工程的通知》.某市據(jù)此提出了實施“校校通”工程的總目標(biāo):從2001年起用10年的時間,在全市中小學(xué)建成不同標(biāo)準(zhǔn)的校園網(wǎng).據(jù)測算,2001年該市用于“校校通”工程的經(jīng)費500萬元.為了保證工程的順利實施,計劃每年投入的資金都比上一年增加50萬元.那么從2001年起的未來10年內(nèi),該市在“校校通”工程中的總投入是多少? 教師引學(xué)生分析:每年“校校通”工程的經(jīng)費數(shù)構(gòu)成公差為50的等差數(shù)列.問題實質(zhì)是求該數(shù)列的前10項的和.解:根據(jù)題意,從2001~2010年,該市每年投入“校校通”工程的經(jīng)費都比上一年增加50萬元.所以,可以建立一個等差數(shù)列{an},表示從2001年起各年投入的資金,其中,a1=500,d=50. 那么,到2010年(n=10),投入的資金總額為答:從2001~2010年,該市在“校校通”工程中的總投入是7250萬元.注:教師引導(dǎo)學(xué)生規(guī)范應(yīng)用題的解題步驟.{an}的前n項和Sn=n2+n,求這個數(shù)列的通項公式.這個數(shù)列是等差數(shù)列嗎?如果是,它的首項與公差分別是什么? 解:根據(jù)由此可知,數(shù)列{an}是一個首項為,公差為2的等差數(shù)列.思考:一般地,數(shù)列{an}前n項和Sn=An2+Bn(A≠0),這時{an}是等差數(shù)列嗎?為什么? [練習(xí)]:從時速10km/h開始,每隔2s速度提高20km/h.如果測試時間是30s,測試距離是多長?n2+{an}的前n項的和為Sn=個數(shù)列的通項公式.n+4,={m|m=2n—1,n∈N*,且m<60}的元素個數(shù),并求這些元素的和.四、拓展延伸{an}前n項和Sn為Sn=pn2+qn+r(p,q,r為常數(shù)且p≠0),則{an}成等差數(shù)列的條件是什么?,4,3,…的前n項和為Sn,求使Sn最大的序號n的值.分析1:等差數(shù)列的前n項和公式可以寫成Sn=n2+(a1-)n,所以Sn可以看成函數(shù)y=x2+(a1-)x(x∈N*).當(dāng)x=n時的函數(shù)值.另一方面,容易知道Sn關(guān)于n的圖像是一條拋物線上的一些點.因此,我們可以利用二次函數(shù)來求n的值.解:由題意知,等差數(shù)列5,4,3,…的公差為-,所以于是,當(dāng)n取與最接近的整數(shù)即7或8時,Sn取最大
點擊復(fù)制文檔內(nèi)容
試題試卷相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1