freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

正弦定理說課稿(參考版)

2024-10-06 06:14本頁面
  

【正文】 布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。2.它表述了三角形的邊與對角的正弦值的關(guān)系。學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。,c=20cm △ABC中,已知下列條件,解三角形.(1)a=20cm,b=11cm,B=30176。,c=10cm(2)A=60176。(六)課堂練習(xí),提高鞏固△ABC中,已知下列條件,解三角形.(1)A=45176。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。2. △ABC中,已知a=20cm,b=28cm,A=40176。,B=176。(五)講解例題,鞏固定理1.例1。3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標法來證明(四)歸納總結(jié),簡單應(yīng)用1.讓學(xué)生用文字敘述正弦定理,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想: 在三角形中,角與所對的邊滿足關(guān)系這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認識從感性逐步上升到理性。(二)探尋特例,提出猜想1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。,∠B=53176。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。另外,抓知識選擇的切入點,從學(xué)生原有的認知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。二 教法根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。能力目標:引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。因此,正弦定理和余弦定理的知識非常重要。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。八、小結(jié)以上是我對這堂課的教學(xué)設(shè)計,這節(jié)課的設(shè)計充分體現(xiàn)了教師為主導(dǎo),學(xué)生為主體,主動探討證明為主線,思維為核心,增強學(xué)生知識和邏輯能力為目標的教學(xué)思想。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。,c=20cm△ABC中,已知下列條件,解三角形.(1)a=20cm,b=11cm,B=30176。,c=10cm(2)A=60176。(六)鞏固練習(xí)△ABC中,已知下列條件,解三角形.(1)A=45176。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形?!鰽BC中,已知a=20cm,b=28cm,A=40176。,B=176。(五)講解例題,鞏固定理。(四)歸納總結(jié),簡單應(yīng)用,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。,得出猜想:在三角形中,角與所對的邊滿足關(guān)系這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認識從感性逐步上升到理性。(二)探尋特例,提出猜想,從自身熟悉的特例(測河寬做直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。七 教學(xué)過程第一:創(chuàng)設(shè)情景,大概用2分鐘第二:實踐探究,形成概念,大約用25分鐘第三:例題講解,習(xí)題應(yīng)用,大約用13分鐘(一)創(chuàng)設(shè)情境,布疑激趣“興趣是最好的老師”,如果一節(jié)課有個好的開頭,那就意味著成功了一半,本節(jié)課由一個實際問題引入,“在生活中,架設(shè)橋梁,鋪設(shè)管道、牽電線等等,我們都需要測量很遠的2點之間的關(guān)系。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。另外,抓知識選擇的切入點,從學(xué)生原有的認知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。四、教法根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。過程與方法目標:引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,體會數(shù)形結(jié)合解決問題。所以正弦定理的探索及證明是本節(jié)課的一個難點。同時學(xué)生已經(jīng)具備了一定的自學(xué)能力,多數(shù)同學(xué)對數(shù)學(xué)的學(xué)習(xí)有相當(dāng)?shù)呐d趣和積極性。因此,正弦定理和余弦定理的知識非常重要。第四篇:正弦定理說課稿[模版]正弦定理說課稿尊敬的各位老師:大家好!我叫是數(shù)學(xué)學(xué)院11級勵志班丁云紅,下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。學(xué)生小組討論,小組代表發(fā)表自己的組內(nèi)的意見,得出結(jié)論。并且將學(xué)生分成小組去討論該如何推導(dǎo)證明該定理。定理的推導(dǎo)是數(shù)學(xué)學(xué)習(xí)必不可少的一種能力,因此進行了如下推導(dǎo)過程。(二)新課教學(xué)帶動學(xué)生回憶以前學(xué)過的知識,并設(shè)置如下問題引導(dǎo)學(xué)生思考,減少學(xué)生對新知識的陌生感。六、說教學(xué)過程(一)導(dǎo)入新課我采用的是設(shè)疑導(dǎo)入,進行口頭提問:(1)在我國古代就有嫦娥奔月的神話故事,明月高懸,我們仰望星空,會有無限遐想,不禁會問,月亮離我們地球有多遠呢?科學(xué)家們是怎樣測出來的呢?(2)設(shè)A,B兩點在河的兩岸,只給你米尺和量角設(shè)備,不過河你可以測出它們之間的距離嗎?設(shè)計意圖:通過生活中的知識引入,激發(fā)學(xué)生學(xué)習(xí)需要和學(xué)習(xí)期待,以問題引起學(xué)生學(xué)習(xí)熱情和探索新知的欲望。例題處理——始終由問題出發(fā),層層設(shè)疑,讓他們在探索中得到知識。新課引入——提出問題,激發(fā)學(xué)生的求知欲。【難點】正弦定理的推導(dǎo)與正弦定理的運用?!厩楦袘B(tài)度價值觀目標】通過對三角形邊角關(guān)系的探究學(xué)習(xí),經(jīng)歷數(shù)學(xué)探究活動的過程,體會由特殊到一般再由一般到特殊的認識事物規(guī)律,培養(yǎng)探索精神和創(chuàng)新意識。三、說教學(xué)目標【知識與技能目標】能準確寫出正弦定理的符號表達式,能夠運用正弦定理理解三角形、初步解決某些測量和幾何計算有關(guān)的簡單的實際問題。二、說學(xué)情本節(jié)授課對象是高二學(xué)生,是在學(xué)生學(xué)習(xí)了必修四基本初等函數(shù)和三角恒等變換的基礎(chǔ)上,由實際問題出發(fā)探索研究三角形邊角關(guān)系,得出正弦定理。在教學(xué)過程中,要引導(dǎo)學(xué)生自主探究三角形的邊角關(guān)系,先由特殊情況發(fā)現(xiàn)結(jié)論,再對一般三角形進行推導(dǎo),并引導(dǎo)學(xué)生分析正弦定理可以解決兩類關(guān)于解三角形的問題:(1)已知兩角和一邊,解三角形。第三篇:《正弦定理》說課稿《正弦定理》說課稿一、說教材,是學(xué)生在已有知識的基礎(chǔ)上,通過對三角形邊角關(guān)系的研究,發(fā)現(xiàn)并掌握三角形的邊長與角度之間的數(shù)量關(guān)系。布置作業(yè),預(yù)習(xí)下一節(jié)內(nèi)容。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。(從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。2.它表述了三角形的邊與對角的正弦值的關(guān)系。學(xué)生板演,老師巡視,及時發(fā)現(xiàn)問題,并解答。,c=20cm△ABC中,已知下列條件,解三角形.(1)a=20cm,b=11cm,B=30176。,c=10cm(2)A=60176。(六)課堂練習(xí),提高鞏固△ABC中,已知下列條件,解三角形.(1)A=45176。要求學(xué)生熟悉掌握已知兩邊和其中一邊的對角時解三角形的各種情形。2.△ABC中,已知a=20cm,b=28cm,A=40176。,B=176。(五)講解例題,鞏固定理1.例1。3.運用正弦定理求解本節(jié)課引入的三角形零件邊長的問題。4.思考是否還有其他的方法來證明正弦定理,布置課后練習(xí),提示,做三角形的外接圓構(gòu)造直角三角形,或用坐標法來證明(四)歸納總結(jié),簡單應(yīng)用1.讓學(xué)生用文字敘述正弦定理,引導(dǎo)學(xué)生發(fā)現(xiàn)定理具有對稱和諧美,提升對數(shù)學(xué)美的享受。2.鼓勵學(xué)生通過作高轉(zhuǎn)化為熟悉的直角三角形進行證明。3.讓學(xué)生總結(jié)實驗結(jié)果,得出猜想:在三角形中,角與所對的邊滿足關(guān)系這為下一步證明樹立信心,不斷的使學(xué)生對結(jié)論的認識從感性逐步上升到理性。(二)探尋特例,提出猜想1.激發(fā)學(xué)生思維,從自身熟悉的特例(直角三角形)入手進行研究,發(fā)現(xiàn)正弦定理。,∠B=53176。讓學(xué)生在問題情景中學(xué)習(xí),觀察,類比,思考,探究,概括,動手嘗試相結(jié)合,體現(xiàn)學(xué)生的主體地位,增強學(xué)生由特殊到一般的數(shù)學(xué)思維能力,形成了實事求是的科學(xué)態(tài)度,增強了鍥而不舍的求學(xué)精神。另外,抓知識選擇的切入點,從學(xué)生原有的認知水平和所需的知識特點入手,教師在學(xué)生主體下給以適當(dāng)?shù)奶崾竞椭笇?dǎo)。二教法根據(jù)教材的內(nèi)容和編排的特點,為是更有效地突出重點,空破難點,以學(xué)業(yè)生的發(fā)展為本,遵照學(xué)生的認識規(guī)律,本講遵照以教師為主導(dǎo),以學(xué)生為主體,訓(xùn)練為主線的指導(dǎo)思想,采用探究式課堂教學(xué)模式,即在教學(xué)過程中,在教師的啟發(fā)引導(dǎo)下,以學(xué)生獨立自主和合作交流為前提,以“正弦定理的發(fā)現(xiàn)”為基本探究內(nèi)容,以生活實際為參照對象,讓學(xué)生的思維由問題開始,到猜想的得出,猜想的探究,定理的推導(dǎo),并逐步得到深化。教學(xué)重點:正弦定理的內(nèi)容,正弦定理的證明及基本應(yīng)用。能力目標:引導(dǎo)學(xué)生通過觀察,推導(dǎo),比較,由特殊到一般歸納出正弦定理,培養(yǎng)學(xué)生的創(chuàng)新意識和觀察與邏輯思維能力,能體會用向量作為數(shù)形結(jié)合的工具,將幾何問題轉(zhuǎn)化為代數(shù)問題。因此,正弦定理和余弦定理的知識非常重要。下面我將從以下幾個方面介紹我這堂課的教學(xué)設(shè)計。在強調(diào)研究性學(xué)習(xí)方法,注重學(xué)生的主體地位,調(diào)動學(xué)生積極性,使數(shù)學(xué)教學(xué)成為數(shù)學(xué)活動的教學(xué)。五、教學(xué)反思從實際問題出發(fā),通過猜想、實驗、歸納等思維方法,最后得到了推導(dǎo)出正弦定理。、銳角、鈍角出發(fā),運用分類討論的思想。
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1