【摘要】【高考調(diào)研】2021年高中數(shù)學(xué)課時作業(yè)13等差數(shù)列的前n項和(第2課時)新人教版必修51.設(shè)數(shù)列{an}的前n項和Sn=n2,則a8的值為()A.15B.16C.49D.64答案A解析a8=S8-S7=82-72=15.2.等差數(shù)列{an}中,S15=90
2024-12-02 01:20
【摘要】【高考調(diào)研】2021年高中數(shù)學(xué)課時作業(yè)12等差數(shù)列的前n項和(第1課時)新人教版必修51.等差數(shù)列{an}的前n項和為Sn,且S3=6,a3=4,則公差d等于()A.1C.2D.3答案C解析由?????a1+2=6,a1+2d=4,解得
【摘要】【高考調(diào)研】2021年高中數(shù)學(xué)課時作業(yè)11等差數(shù)列(第3課時)新人教版必修51.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40B.42C.43D.45答案B解析∵a2+a3=13,∴2a1+3d=13.∵a1=2,
2024-12-02 02:12
【摘要】等差數(shù)列的前n項和第二課時2.等差數(shù)列的前n項和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項和為Sn,則該數(shù)列的通項公式為S1,n=1Sn-Sn-1,n≥2an=一、復(fù)習(xí)1(1)2nnnad???注:n項和的方法“倒序相加法”
2024-11-21 12:02
【摘要】等差數(shù)列的前n項和第一課時一般地,我們稱a1+a2+…+an為數(shù)列{an}的前n項和,常用Sn表示,即Sn=a1+a2+…+an練習(xí):試求下列數(shù)列的前100項和.(1)2,2,2,2,……(2)-1,1,-1,1,……(3)1,2,3,4,……一、新課1
【摘要】等差數(shù)列的前n項和第三課時2.等差數(shù)列的前n項和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項和為Sn,則該數(shù)列的通項公式為S1,n=1Sn-Sn-1,n≥2an=一、復(fù)習(xí)3.若數(shù)列{an}為等差數(shù)列:1(1)2nnnad
【摘要】等差數(shù)列的前n項和(第2課時)學(xué)習(xí)目標(biāo)進(jìn)一步熟練掌握等差數(shù)列的通項公式和前n項和公式,了解等差數(shù)列的一些性質(zhì),并會用它們解決一些相關(guān)問題,提高應(yīng)用意識.合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境復(fù)習(xí)引入::,分別是,把公式看成方程,能解決幾個量?n的二
2024-12-12 20:22
【摘要】第一頁,編輯于星期六:點三十四分。,2.3等差數(shù)列的前n項和第二課時等差數(shù)列前n項和的應(yīng)用,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十四分。,第...
2024-10-22 18:53
【摘要】【高考調(diào)研】2021年高中數(shù)學(xué)課時作業(yè)18等比數(shù)列的前n項和(第2課時)新人教版必修51.在各項都為正數(shù)的等比數(shù)列{an}中,首項a1=3,前三項和為21,則a3+a4+a5=()A.33B.72C.84D.189答案C2.設(shè)等比數(shù)列{an}的公比q=2,前n項和為
2024-12-02 00:25
【摘要】【成才之路】2021年春高中數(shù)學(xué)第1章數(shù)列2等差數(shù)列第3課時等差數(shù)列的前n項和同步練習(xí)北師大版必修5一、選擇題1.已知等差數(shù)列{an}滿足a2+a4=4,a3+a5=10,則它的前10項和S10=()A.138B.135C.95D.23[答案]C[解析]
2024-12-09 06:36
【摘要】第一頁,編輯于星期六:點三十四分。,2.3等差數(shù)列的前n項和第一課時等差數(shù)列前n項和的基本問題,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十四分。...
【摘要】等差數(shù)列第二課時:an-an-1=d(n≥2)或an+1-an=d(n∈N*)2.通項公式:an=a1+(n-1)d一、復(fù)習(xí){an}為等差數(shù)列?3.等差數(shù)列的性質(zhì)an+1-an=dan+1=an+d?1212()nnnaaa?????例{an}的通項公
2024-11-21 17:35
【摘要】【高考調(diào)研】2021年高中數(shù)學(xué)課時作業(yè)17等比數(shù)列的前n項和第1課時新人教版必修51.(2021·新課標(biāo)全國Ⅰ)設(shè)首項為1,公比為23的等比數(shù)列{an}的前n項和為Sn,則()A.Sn=2an-1B.Sn=3an-2C.Sn=4-3anD.Sn=3-2an答案D
【摘要】等差數(shù)列的前n項和(二)課時目標(biāo)n項和的性質(zhì),并能靈活運用.n項和的最值問題.an與Sn的關(guān)系,能根據(jù)Sn求an.1.前n項和Sn與an之間的關(guān)系對任意數(shù)列{an},Sn是前n項和,Sn與an的關(guān)系可以表示為an=?????n=,n2.
2024-12-09 10:14
【摘要】等差數(shù)列(第1課時)學(xué)習(xí)目標(biāo)掌握等差數(shù)列的概念;理解等差數(shù)列的通項公式的推導(dǎo)過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項公式解決相應(yīng)的一些問題.讓學(xué)生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力.通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生
2024-12-12 20:23