【摘要】2.3.2向量的坐標(biāo)表示(1)【學(xué)習(xí)目標(biāo)】1、能正確的用坐標(biāo)來(lái)表示向量;2、能區(qū)分向量的坐標(biāo)與點(diǎn)的坐標(biāo)的不同;3、掌握平面向量的直角坐標(biāo)運(yùn)算4、提高分析問(wèn)題的能力?!绢A(yù)習(xí)指導(dǎo)】1、一般地,對(duì)于向量a,當(dāng)它的起點(diǎn)移至_______時(shí),其終點(diǎn)的坐標(biāo)),(yx稱(chēng)為向量a的(直角)
2024-11-24 01:05
【摘要】課題:向量的概念及表示班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、了解向量的概念,會(huì)用字母表示向量,理解向量的幾何表示。2、理解零向量、單位向量、平行向量、相等向量、共線向量,相反向量的概念?!菊n前預(yù)習(xí)】問(wèn)題1、位移和距離兩個(gè)量有什么不同?問(wèn)題2、舉例說(shuō)明只有
2024-11-24 01:06
【摘要】2.4.1向量的數(shù)量積(1)【學(xué)習(xí)目標(biāo)】1.理解平面向量數(shù)量積的概念及其幾何意義2.掌握數(shù)量積的運(yùn)算法則3.了解平面向量數(shù)量積與投影的關(guān)系【預(yù)習(xí)指導(dǎo)】1.已知兩個(gè)非零向量a與b,它們的夾角為?,則把數(shù)量_________________叫做向量a與b的數(shù)量積(或內(nèi)積)。規(guī)定:零
2024-12-09 10:15
【摘要】課題:向量的數(shù)乘(2)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解兩個(gè)向量共線的含義,并掌握向量共線定理;2、能運(yùn)用實(shí)數(shù)與向量的積解決有關(guān)問(wèn)題?!菊n前預(yù)習(xí)】1、填空:(1)?||a??;(2)當(dāng)0??時(shí),a??與a?方向
2024-12-09 03:24
【摘要】向量的加法【學(xué)習(xí)目標(biāo)】;;,并會(huì)用它們進(jìn)行向量計(jì)算【學(xué)習(xí)重難點(diǎn)】重點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律難點(diǎn):向量加法的三角法則、平行四邊形則和加法運(yùn)算律;【自主學(xué)習(xí)】、向量的加法:已知向量a和b,_____________________________________
【摘要】課題:向量的減法班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量減法的含義;2、能用三角形法則和平行四邊形法則求出兩向量的差;【課前預(yù)習(xí)】1、如何用向量加法的三角形法則和平行四邊形法則作兩向量的和?2、??ABOA;???CA
【摘要】 《平面向量正交分解及坐標(biāo)表示》導(dǎo)學(xué)案 【學(xué)習(xí)目標(biāo)】 (1)理解平面向量的坐標(biāo)的概念; (2)掌握平面向量的坐標(biāo)運(yùn)算; (3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線. 【重點(diǎn)難點(diǎn)】 教學(xué)重點(diǎn)...
2025-04-03 01:19
【摘要】及坐標(biāo)表示(第2課時(shí))學(xué)習(xí)目標(biāo):(3)會(huì)根據(jù)向量的坐標(biāo),判斷向量是否共線.(1)理解平面向量的坐標(biāo)的概念;(2)掌握平面向量的坐標(biāo)運(yùn)算;兩個(gè)非零向量平行(共線)的充要條件????1122,,,(0)axybxyb???設(shè)當(dāng)且僅當(dāng)存在實(shí)數(shù),使?ba??//ab
2024-11-22 08:49
【摘要】課題:向量的數(shù)乘(1)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量數(shù)乘的含義,掌握向量數(shù)乘的運(yùn)算律;2、理解數(shù)乘的運(yùn)算律與實(shí)數(shù)乘法的運(yùn)算律的區(qū)別與聯(lián)系?!菊n前預(yù)習(xí)】1、質(zhì)點(diǎn)從點(diǎn)O出發(fā)做勻速直線運(yùn)動(dòng),若經(jīng)過(guò)s1的位移對(duì)應(yīng)的向量用a?表示,那么在同方
2024-12-09 00:28
【摘要】函數(shù)sin()yAx????的圖像(1)【學(xué)習(xí)目標(biāo)】:1、了解函數(shù)sin()yAx????的實(shí)際意義;2、弄清,,A??與函數(shù)sin()yAx????的圖像之間的關(guān)系;3、會(huì)用五點(diǎn)法畫(huà)函數(shù)sin()yAx????的圖像;【重點(diǎn)難點(diǎn)】:五點(diǎn)法畫(huà)函數(shù)sin()yAx????的圖像一、預(yù)
2024-12-09 10:16
【摘要】課題:平面向量復(fù)習(xí)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】通過(guò)本章的復(fù)習(xí),對(duì)知識(shí)進(jìn)行一次梳理,突出知識(shí)間的內(nèi)在聯(lián)系,提高綜合運(yùn)用向量知識(shí)解決問(wèn)題的能力?!菊n前預(yù)習(xí)】1、已知向量a=(5,10),b=(3,4)??,則(1)2a+b=,a
【摘要】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個(gè)點(diǎn)都可用一對(duì)有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對(duì)于每一個(gè)向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個(gè)向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
【摘要】課題:數(shù)列(1)班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】了解數(shù)列的概念、了解數(shù)列的分類(lèi)、了解數(shù)列是一種特殊的函數(shù),會(huì)用圖象法的列表法表示數(shù)列.【課前預(yù)習(xí)】1.考察下面的問(wèn)題:①某劇場(chǎng)有30排座位,第一排有20個(gè)座位,從第二排起,后一排都比前一排多2個(gè)
【摘要】2.4.1向量的數(shù)量積(2)【學(xué)習(xí)目標(biāo)】1、能夠理解和熟練運(yùn)用模長(zhǎng)公式,兩點(diǎn)距離公式及夾角公式;2、理解并掌握兩個(gè)向量垂直的條件?!绢A(yù)習(xí)指導(dǎo)】1、若),(),,(2211yxbyxa??則??ba______________________________2、向量的模長(zhǎng)公式:設(shè)
【摘要】江蘇省建陵高級(jí)中學(xué)2021-2021學(xué)年高中數(shù)學(xué)雙曲線的幾何性質(zhì)(1)導(dǎo)學(xué)案(無(wú)答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1、理解雙曲線的范圍、對(duì)稱(chēng)性、頂點(diǎn)、漸近線、離心率等幾何性質(zhì);2、理解雙曲線標(biāo)準(zhǔn)方程中ab、、c的幾何意義?!菊n前預(yù)習(xí)】1、對(duì)于雙曲線22194yx??,它的頂點(diǎn)坐標(biāo)為_(kāi)____________
2024-12-08 18:02