【摘要】2.1.5向量共線條件與軸上向量坐標運算一、學習要點:單位向量、軸上向量坐標運算、共線定理應用二、學習過程:(一)復習引入:1.向量的表示方法2.向量的加法,減法及運算律3.實數(shù)與向量的乘法(向量數(shù)乘)4.向量共線定理(二)講解新課:1.單位向量給定一個非零向量a,與a同方向且長度等于的單位向量叫
2024-11-22 16:44
【摘要】自學目標1、在理解向量共線的概念的基礎上,學習用坐標表示向量共線的條件。2、利用向量共線的坐標表示解決有關問題。學習過程一、課前準備(預習教材103頁~104頁,找出疑惑之處)二、新課導學1、若//(0)abb?則存在唯一實數(shù)?使;反之,若存在唯一實數(shù)?,使,則//
2024-12-01 23:46
【摘要】自學目標1、掌握平行向量基本定理;2、掌握軸上向量的座標及其運算。學習過程[來源:.Com]一、課前準備(預習教材77頁~79頁,找出疑惑之處)二、新課導學1、向量共線的條件2、平行向量基本定理:3、單位向量:4、軸上向量的座標及其運算:①已知軸l,取單位向
【摘要】雙基達標?限時20分鐘?1.下列各組的兩個向量共線的是().A.a1=(-2,3),b1=(4,6)B.a2=(1,-2),b2=(7,14)C.a3=(2,3),b3=(3,2)D.a4=(-3,2),b4=(6,-4)解析對于A,-2
2024-12-01 23:43
【摘要】一、選擇題1.設k∈R,下列向量中,與向量a=(1,-1)一定不平行的向量是()A.b=(k,k)B.c=(-k,-k)C.d=(k2+1,k2+1)D.e=(k2-1,k2-1)【解析】由向量共線的判定條件,當k=0時,向量b,c與a平行;當k=±1
【摘要】課題向量共線的條件課型新授課時1時間第4周主備人教研組長包組領導編號教學目標、單位向量、軸上的坐標公式、數(shù)軸上的兩點間的距離公式;;教學內容教學設計課前預習案知識鏈接:1.若有向量a?(a??0)、b?,實數(shù)λ,使b?=λ
【摘要】平面向量基本定理一.學習要點:向量基本定理及其簡單應用二.學習過程:(一)復習:1向量的加法運算;2向量共線定理;(二)新課學習:1.平面向量基本定理:如果1e,2e是同一平面內的兩個向量,那么對于這一平面內的任一向量a,
【摘要】第二章一、選擇題1.已知數(shù)軸上A點坐標為-5,AB=-7,則B點坐標是()A.-2B.2C.12D.-12[答案]D[解析]∵xA=-5,AB=-7,∴xB-xA=-7,∴xB=-12.2.設a與b是兩個不共線的向量,且向量a+λb與-(b
【摘要】平面向量共線的坐標表示學習目標:1.理解用坐標表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標,判斷向量是否共線.3.掌握三點共線的判斷方法.【學法指導】1.應用平面向量共線條件的坐標表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點、程序
2024-11-23 20:38
【摘要】教學設計一、課前延伸預習檢測:判斷下列命題是否正確(1)向量AB與向量CD平行,則向量AB與向量CD方向相同或相反。()(2)向量AB與向量CD是共線向量則A、B、C、D四點必在一條直線上。()(3)若干個向量首尾相連,形成封閉圖形則這些向量的和等于零向量。()
【摘要】復習1、平面向量基本定理的內容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內的兩個不共線的向量,那么對于這一平面內的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內所有向量的一組基底.
2024-11-21 17:33
【摘要】撰稿教師:李麗麗學習目標1.了解平面向量基本定理,掌握平面向量基本定理及其應用2.利用平面向量基本定理解決有關問題學習過程一、課前準備(預習教材96頁~98頁,找出疑惑之處)二、新課導學1、平行向量基本定理2、平面內任一向量是否可以用兩個不共線的向量來表示。如圖,設2
【摘要】§向量的減法(課前預習案)班級:___姓名:________編寫:一、新知導學1、如果把兩個向量的始點放在一起,則這兩個向量的差是以為起點,為終點的向量。2、一個向量BA等于它的終點相對于點O的位置向量___減去它的始點相對于點O的位置向量___,或簡記為
【摘要】§平面向量數(shù)量積的運算律(課前預習案)班級:___姓名:________編寫:一、新知導學1.交換律:a?b=;2.數(shù)乘結合律:(?a)?b==;3.分配律:(a+b)?c=.說明
【摘要】第二章平面向量平面向量的基本定理及坐標表示平面向量共線的坐標表示1.通過實例了解如何用坐標表示兩個共線向量,以及兩直線平行與兩向量共線的判定.(易混點)2.理解用坐標表示的平面向量共線的條件,并會應用.(重點)3.會根據(jù)平面向量的坐標判斷向量是否共線.(難點)1.平面向量共線的坐標表示2
2024-11-23 19:09