【正文】
上午 4時(shí) 53分 41秒 上午 4時(shí) 53分 04:53: MOMODA POWERPOINT Lorem ipsum dolor sit amet, consectetur adipiscing elit. Fusce id urna blandit, eleifend nulla ac, fringilla purus. Nulla iaculis tempor felis ut cursus. 感謝您的下載觀看 專家告訴 。 2023年 1月 上午 4時(shí) 53分 :53January 29, 2023 ? 1業(yè)余生活要有意義,不要越軌。 :53:4104:53:41January 29, 2023 ? 1意志堅(jiān)強(qiáng)的人能把世界放在手中像泥塊一樣任意揉捏。 04:53:4104:53:4104:53Sunday, January 29, 2023 ? 1知人者智,自知者明。 04:53:4104:53:4104:531/29/2023 4:53:41 AM ? 1越是沒有本領(lǐng)的就越加自命不凡。 上午 4時(shí) 53分 41秒 上午 4時(shí) 53分 04:53: ? 楊柳散和風(fēng),青山澹吾慮。 2023年 1月 上午 4時(shí) 53分 :53January 29, 2023 ? 1少年十五二十時(shí),步行奪得胡馬騎。 2023年 1月 29日星期日 上午 4時(shí) 53分 41秒 04:53: ? 1楚塞三湘接,荊門九派通。 04:53:4104:53:4104:53Sunday, January 29, 2023 ? 1不知香積寺,數(shù)里入云峰。 04:53:4104:53:4104:531/29/2023 4:53:41 AM ? 1成功就是日復(fù)一日那一點(diǎn)點(diǎn)小小努力的積累。 上午 4時(shí) 53分 41秒 上午 4時(shí) 53分 04:53: ? 沒有失敗,只有暫時(shí)停止成功!。 2023年 1月 上午 4時(shí) 53分 :53January 29, 2023 ? 1行動(dòng)出成果,工作出財(cái)富。 2023年 1月 29日星期日 上午 4時(shí) 53分 41秒 04:53: ? 1比不了得就不比,得不到的就不要。 04:53:4104:53:4104:53Sunday, January 29, 2023 ? 1乍見翻疑夢(mèng),相悲各問年。 04:53:4104:53:4104:531/29/2023 4:53:41 AM ? 1以我獨(dú)沈久,愧君相見頻。 ? 靜夜四無鄰,荒居舊業(yè)貧。這里的 if和 is即我們上面所說的價(jià)格差分化序列。這里調(diào)整樣本期的目的是為了對(duì)價(jià)格序列進(jìn)行差分,差分要求后一個(gè)值減去前一個(gè)值,故原序列的第一個(gè)值只能作為差分的初值。選擇 File\Open\Workfile菜單,可打開已保存的工作文件。接著保存工作文件,選 File\Save打開保存對(duì)話框,輸入工作文件名和保存的位置。點(diǎn)擊“ OK”按鈕,數(shù)據(jù)序列即被導(dǎo)入,在工作文件中以圖標(biāo)形式顯示。選項(xiàng)右邊 Upperleft data cell下的空格填寫 Excel工作文件左上方第一個(gè)有效數(shù)據(jù)單元格地址,系統(tǒng)默認(rèn)為“ B2”,在 Names for series or Number if named in files中輸入序列的名稱,若導(dǎo)入的數(shù)據(jù) Excel文件中包含序列的名稱,則只要導(dǎo)入序列的個(gè)數(shù)即可(這里命名為 f及 s,分別為期貨和現(xiàn)貨價(jià)格序列)。 ? ( 3)數(shù)據(jù)的導(dǎo)入 ? 在 HR工作文件的菜單項(xiàng)中選擇 Proc,在彈出的下拉菜單中選擇 Import,然后在二級(jí)下拉菜單中選擇 Read TextlotusExcel,找到剛剛保存的名為 FS的 Excel文件的存儲(chǔ)路徑后雙擊文件名 FS,彈出如下圖所示對(duì)話框。 ? 在 Start和 End中分別輸入“ 1”和“ 234”。 ? ( 2) EViews工作文件的建立 ? 打開 Eviews,選擇 File下拉菜單中 New項(xiàng),在 New項(xiàng)下的下拉菜單中選擇 Workfile項(xiàng),彈出如下圖所示 Workfile Create菜單窗口。若那一天現(xiàn)貨或期貨中一數(shù)據(jù)缺失,則去掉該數(shù)據(jù)以達(dá)到一一對(duì)應(yīng)。我們選擇了在任何一個(gè)時(shí)點(diǎn)的后二個(gè)月進(jìn)入交割月的期貨合約的中間價(jià)格作為分析對(duì)象,所以每次取期貨合約時(shí)都只用它到期前倒數(shù)第二個(gè)月的數(shù)據(jù),現(xiàn)貨數(shù)據(jù)與期貨數(shù)據(jù)按時(shí)間對(duì)應(yīng)。 ? 【實(shí)驗(yàn)內(nèi)容】 ? 利用 EViews,用期貨市場(chǎng)的實(shí)際數(shù)據(jù)估計(jì)最優(yōu)套期保值比率。s model. ? [Call,Put] = blkprice(Price, Strike, Rate, Time, Volatility) ? Inputs: ? Price Current price of the underlying asset (., a futures contract). ? Strike Strike (., exercise) price of the futures option. ? Rate Annualized continuously pounded riskfree rate of return over the life of the option, expressed as a positive decimal number. ? Time Time to expiration of the option, expressed in years. ? Volatility Annualized futures price volatility, expressed as a positive decimal number. ? Outputs: ? Call Price (., value) of a European call futures option. ? Put Price (., value) of a European put futures option. ? Example: ? Consider European futures options with exercise prices of $20 that expire in 4 months. Assume the current underlying futures price is also $20 and has a volatility of 25% per annum, and that the riskfree rate is 9% per annum. Using this data, ? [Call, Put] = blkprice(20, 20, , 4/12, ) ? returns equal call and put prices of $. Notes: ? (1) Any input argument may be a scalar, vector, or matrix. If a scalar, then that value is used to price all options. If more than one input is a vector or matrix, then the dimensions of those nonscalar inputs must be the same. ? (2) Ensure that Rate, Time, and Volatility are expressed in consistent units of time. 實(shí)驗(yàn)五 基于 EViews的期貨最優(yōu)套期保值比率的估計(jì) ? 【實(shí)驗(yàn)?zāi)康摹? ? 利用理論模型估計(jì)中國(guó)期貨交易所交易的期貨合約的最優(yōu)套期保值比率,并對(duì)保值效果進(jìn)行績(jī)效評(píng)估,說明期貨套期保值在經(jīng)濟(jì)生活中的重要性。}) ? Volatility = blsimpv(100, 95, , , 10, , 0, [], true) ? return an implied volatility of , or %, per annum. Notes: ? (1) The input arguments Price, Strike, Rate, Time, Value, Yield, and Class may be scalars, vectors, or matrices. If scalars, then that value is used to pute the implied volatility from all options. If more than one of these inputs is a vector or matrix, then the dimensions of all nonscalar inputs must be the same. ? (2) Ensure that Rate, Time, and Yield are expressed in consistent units of time. 期貨期權(quán)定價(jià)函數(shù) ? BLKPRICE Black39。}. If empty or missing, the default is a call option. ? Output: ? Volatility Implied volatility of the underlying asset derived from European option prices, expressed as a decimal number. If no solution can be found, a NaN (., NotaNumber) is returned. Example: ? Consider a European call option trading at $10 with an exercise price of $95 and 3 months until expiration. Assume the underlying stock pays no dividends, is trading at $100, and the riskfree rate is % per annum. Furthermore, assume we are interested in implied volatilities no greater than (., 50% per annum). Under these conditions, any of the following mands ? Volatility = blsimpv(100, 95, , , 10, ) ? Volatility = blsimpv(100, 95, , , 10, , 0, [], {39。 to specify put options, set Class = false or Class = {39。call39。 ? BLSTH