【摘要】復數(shù)檢測1.若復數(shù)iziz96,29421????,則復數(shù)??izz21?的實部為2.復數(shù)z滿足??izi4321???,則?z3.復數(shù),230iz??復數(shù)z滿足003zzzz???,則?z4.已知yx,
2024-11-19 11:50
【摘要】復數(shù)的幾何意義【課標要求】1.理解復平面及相關(guān)概念和復數(shù)與復平面內(nèi)的點、向量的對應關(guān)系.2.掌握復數(shù)加減法的幾何意義及應用.3.掌握復數(shù)模的概念及幾何意義.【核心掃描】1.復數(shù)的模、復數(shù)的幾何意義.(重點)2.模及復數(shù)幾何意義的應用.(難點)自學導引1.復平面
2024-11-22 08:56
【摘要】復數(shù)的幾何意義測試題一、選擇題1.已知復數(shù)z滿足2230zz???,則復數(shù)z的對應點的軌跡是()A.一個圓B.線段我C.兩個點D.兩個圓答案:A2.對于兩個復數(shù)13i22????,13i22????,有下列四個結(jié)論:①1???;②1???;③1???
2024-11-19 02:33
【摘要】復數(shù)與平行四邊形家族菱形、矩形、正方形等特殊的平面幾何圖形與某些復數(shù)式之間存在某種聯(lián)系及相互轉(zhuǎn)化的途徑.在求解復數(shù)問題時,若能善于觀察條件中給定的或者是通過推理所得的復數(shù)形式的結(jié)構(gòu)特征,往往能獲得簡捷明快的解決方法.下面列舉幾例,以供參考.一、復數(shù)式與矩形的轉(zhuǎn)化例1已知復數(shù)12zz,滿足171z??,271z??,且1
2024-11-24 00:26
【摘要】復數(shù)的幾何意義課時目標、向量的對應關(guān)系.復數(shù)加減法的幾何意義及應用..1.復平面的定義建立了直角坐標系來表示復數(shù)的平面叫做復平面,x軸叫做________,y軸叫做________,實軸上的點都表示實數(shù),除________外,虛軸上的點都表示純虛數(shù).2.復數(shù)與點、向量間的對應在復平面內(nèi),復數(shù)z=a+b
2024-12-09 09:31
【摘要】復數(shù)z=a+bi直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復數(shù)平面(簡稱復平面)一一對應z=a+bi復數(shù)的幾何意義(一)
2024-11-22 08:47
【摘要】復數(shù)的幾何意義雙基達標?限時20分鐘?1.復數(shù)z=-1+i1+i-1,則在復平面內(nèi)z所對應的點在第______象限.解析z=?-1+i??1-i??1+i??1-i?-1=2i2-1=-1+i.答案第二象限2.在復平面內(nèi),復數(shù)21+i對應的點與原點的距離是____
2024-12-09 09:28
【摘要】§復數(shù)的幾何意義課時目標、向量的對應關(guān)系.加減法的幾何意義及應用..1.復平面建立直角坐標系來表示復數(shù)的平面叫做復平面.x軸叫做________,y軸叫做________,實軸上的點都表示________;除________外,虛軸上的點都表示純虛數(shù).2.復數(shù)的兩種幾何意義
【摘要】復數(shù)的幾何意義習題課課時目標.,復數(shù)的模的概念..1.復數(shù)相等的條件:a+bi=c+di?____________(a,b,c,d∈R).2.復數(shù)z=a+bi(a,b∈R)對應向量OZ→,復數(shù)z的模|z|=|OZ→|=__________.3.復數(shù)z=a+bi(a,b∈R)的模|
【摘要】實數(shù)集的一些性質(zhì)和特點:(1)實數(shù)可以判定相等或不相等;(2)不相等的實數(shù)可以比較大??;(3)實數(shù)可以用數(shù)軸上的點表示;(4)實數(shù)可以進行四則運算;(5)負實數(shù)不能進行開偶次方根運算;……(1)實數(shù)集原有的有關(guān)性質(zhì)和特點能否推廣到復數(shù)集?(2)從復數(shù)的特點出發(fā),尋找復數(shù)集新的(實數(shù)集
2024-11-21 17:10
【摘要】最大值與最小值一般地,設(shè)函數(shù)y=f(x)在x=x0及其附近有定義,如果f(x0)的值比x0附近所有各點的函數(shù)值都大,我們就說f(x0)是函數(shù)的一個極大值,記作y極大值=f(x0),x0是極大值點。如果f(x0)的值比x0附近所有各點的函數(shù)值都小,我們就說f(x0)是函數(shù)的一個極小值。記作y極小值=f(x0),x0是極小值點。極大
2024-11-21 23:31
【摘要】【成才之路】2021-2021學年高中數(shù)學第2課時復數(shù)的幾何意義同步檢測北師大版選修1-2一、選擇題1.復數(shù)z與它的模相等的充要條件是()A.z為純虛數(shù)B.z是實數(shù)C.z是正實數(shù)D.z是非負實數(shù)[答案]D[解析]∵z=|z|,∴z為實數(shù)且z≥0.2.已知復數(shù)z=(
2024-12-09 16:48
【摘要】復數(shù)的幾何意義⑴一、問題引入:我們知道實數(shù)可以用數(shù)軸上的點來表示。x01一一對應注:規(guī)定了正方向,原點,單位長度的直線叫做數(shù)軸.實數(shù)數(shù)軸上的點(形)(數(shù))實數(shù)的幾何模型:類比實數(shù)的表示,可以用什么來表示復數(shù)?想一想?回憶…復數(shù)的一般形式?
2024-11-21 11:00
【摘要】復數(shù)的幾何意義⑵一、復習回顧:復平面復數(shù)z=a+bi有序?qū)崝?shù)對(a,b)直角坐標系中的點Z(a,b)xyobaZ(a,b)建立了平面直角坐標系來表示復數(shù)的平面x軸------實軸y軸------虛軸(數(shù))(形)------復數(shù)平面
2024-11-21 18:06