【摘要】§3連續(xù)型隨機變量除了離散型隨機變量之外,還有非離散型的隨機變量,這些隨機變量的取值已不再是有限個或可列個。在這類非離散型隨機變量中,有一類常見而重要的類型,即所謂連續(xù)型隨機變量。粗略地說,連續(xù)型隨機變量可以在某特定區(qū)間內(nèi)任何一點取值。例如某種樹的高度;測量的誤差;計算機的使用壽命等等都是連續(xù)型隨機變量。對于連續(xù)型隨機變量,不能一
2024-09-03 18:24
【摘要】第二章隨機變量?隨機變量及其分布函數(shù)?離散型隨機變量?連續(xù)型隨機變量?隨機變量函數(shù)的分布在實際問題中,隨機試驗的結(jié)果可用數(shù)量來表示,這就產(chǎn)生了隨機變量的概念?!祀S機變量及其分布函數(shù)一方面,有些試驗,其結(jié)果與數(shù)有關(guān)(試驗結(jié)果就是一個數(shù));
2025-06-20 06:28
2025-05-19 06:01
【摘要】§2離散型隨機變量研究一個離散型隨機變量不僅要知道它可能取值而且要知道它取每一個可能值的概率.一.概率分布:設(shè)離散型隨機變量的可能取值是有限個或可數(shù)個值,設(shè)的可能取值: 為了完全描述隨機變量,只知道X的可能取值是很不夠的,還必須知道取各種值的概率,也就是說要知道下列一串概率的值: 記 ,將的可能取值及相應(yīng)的既率成下表
2024-09-03 11:53
【摘要】Chapter2(2)連續(xù)型隨機變量及概率密度教學要求:1.理解連續(xù)型隨機變量的概率密度及性質(zhì);2.掌握正態(tài)分布、均勻分布和指數(shù)分布;3.會應(yīng)用概率密度計算有關(guān)事件的概率..密度連續(xù)型隨機變量的概率一.幾種常用的連續(xù)型分布二.正態(tài)分布三.注意事項及課堂練習四一、連續(xù)型隨機變量的概率密度
2025-01-23 12:31
【摘要】復(fù)習引入1、什么是隨機事件?什么是基本事件?在一定條件下可能發(fā)生也可能不發(fā)生的事件,叫做隨機事件。試驗的每一個可能的結(jié)果稱為基本事件。2、什么是隨機試驗?凡是對現(xiàn)象或為此而進行的實驗,都稱之為試驗。如果試驗具有下述特點:(1)試驗可以在相同條件下重復(fù)進行;(2)每次試驗的所有可能結(jié)果都是明確可知的,并且不止一
2025-07-23 05:55
【摘要】?某商場要根據(jù)天氣預(yù)報來決定今年國慶節(jié)是在商場內(nèi)還是商場外開展促銷活動,統(tǒng)計資料表明,每年國慶節(jié)商場內(nèi)的促銷活動可獲得經(jīng)濟效益2萬元,商場外的促銷活動如果不遇到有雨天氣可獲得經(jīng)濟效益10萬元,如果促銷遇到有雨天氣則帶來經(jīng)濟損失4萬元。9月30日氣象臺預(yù)報國慶節(jié)當?shù)赜杏甑母怕适?0%,商場應(yīng)該選擇哪種促銷方式?,其中某一次射擊中,可能
2024-08-27 01:21
【摘要】連續(xù)型隨機變量的分布(一)連續(xù)型隨機變量及其概率密度函數(shù):對于隨機變量X的分布函數(shù)F(X),若存在非負函數(shù)f(x),使對于任意的實數(shù)x,有,則稱X為連續(xù)性隨機變量,f(x)稱為X的概率密度函數(shù),簡稱概率密度。注:F(x)表示曲線下x左邊的面積,曲線下的整個面積為1。2.密度函數(shù)f(x)的性質(zhì):注:f(x)不是概率。1)??f(x)≥0?
2025-08-08 17:27
2025-06-20 21:14
【摘要】某商場為滿足市場需求要將單價分別為18元/kg,24元/kg,36元/kg的3種糖果按3:2:1的比例混合銷售,其中混合糖果中每一顆糖果的質(zhì)量都相等,如何對混合糖果定價才合理?2618+24+363?定價為可以嗎?18×1/2+24×1/3+36×1/6
2024-11-14 02:15
【摘要】離散型隨機變量的說課稿 各位評委,各位老師下午好,我的說課內(nèi)容是人教A版選修2-3第二章隨機變量及其分布第一節(jié)離散型隨機變量及其分布列第一課時,下面我就以下幾個方面完成我的說課內(nèi)容。 一.教材分析...
2024-12-04 22:44
【摘要】12022年2月3日星期四2(一)離散型隨機變量取值的數(shù)學期望?????????kkpxpxpxXE2211P1xkx2x······1p2pkp······X說明:(1)E(X)它反映
2025-01-09 15:50
【摘要】1北京市中小學“京教杯”青年教師教學設(shè)計大賽教學設(shè)計參與人員姓名單位聯(lián)系方式設(shè)計者徐丹丹北京市第八中學大興分校18601027850實施者徐丹丹北京市第八中學大興分校18601027850指導者楊林軍北京市大興區(qū)教師進修學校13241934602程
2024-12-03 09:55
【摘要】1§離散型隨機變量§隨機變量的概念§超幾何分布·二項分布·泊松分布?2,1)()(???ixpxXPii1.“0-1”分布(兩點分布)3.二項分布),(~pnBX)(xPnx
2025-07-20 19:19
【摘要】導入新課(1)離散型隨機變量的分布列:復(fù)習回顧Xx1x2…xi…Pp1p2…pi…(2)離散型隨機變量分布列的性質(zhì):①pi≥0,i=1,2,…;②p1+p2+…+pi+…=1.對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關(guān)事件的概率.但在實際
2025-05-12 22:37