【摘要】課題圓的一般方程課型新課案序第1課時教學目標知識與技能:(1)在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑.掌握方程x2+y2+Dx+Ey+F=0表示圓的條件.(2)能通過配方等手段,把圓的一般方程化為圓的標準方程.能用待定系數(shù)法求圓的方程。會求動點M的坐標滿足的關系式。
2024-08-15 16:27
【摘要】圓的一般方程(一)教學目標1.知識與技能(1)在掌握圓的標準方程的基礎上,理解記憶圓的一般方程的代數(shù)特征,由圓的一般方程確定圓的圓心半徑,掌握方程x2+y2+Dx+Ey+F=0表示圓的條件.(2)能通過配方等手段,把圓的一般方程化為圓的標準方程,能用待定系數(shù)法求圓的方程.(3)培養(yǎng)學生探索發(fā)現(xiàn)及分析解決問題的實際能力.2.過程與方法通過對方
2025-04-19 12:24
【摘要】圓的一般方程OCM(x,y)rbyax2)(2)(2??????ba,圓的標準方程的形式是怎樣的?其中圓心的坐標和半徑各是什么?r復習回顧:OCM(x,y)思考:下列方程表示什么圖形?(1)x2+y2-2x+4y-4=0(2)x2+y2-2x+4y+5=0(3)x2+y2-2x
2024-08-15 15:02
【摘要】圓的標準方程【自主預習】1、在平面直角坐標系中,確定一個圓的要素有哪些?2、①若一個圓的圓心是(0,0),半徑是2,圓的方程是什么?②若一個圓的圓心是(-2,1),半徑是3,圓的方程是什么?③若一個圓的圓心是(a,b),半徑是r(y0),圓的方程是什么?3、分析圓的標準方程有何特點?4、寫出下列圓的方程⑴圓心在原點,
2025-07-26 20:56
【摘要】圓的一般方程x、y的方程x2+y2+Dx+Ey+F=0,當△=D2+E2-4F時,分別1.直線Ax+By+C=0與圓(x-a)2+(y-b)2=r2圓心到直線的距離等于半徑大于半徑小于半徑基礎知
2024-11-10 23:22
【摘要】知識回顧:(1)圓的標準方程:(x-a)2+(y-b)2=r2指出下面圓的圓心和半徑:(x-1)2+(y+2)2=2(x+2)2+(y-2)2=5(x+a)2+(y-2)2=a2(a≠0)特征:直接看出圓心與半徑x2+y2+Dx+Ey+F=0把圓
2025-07-24 11:59
【摘要】§4-1 圓的標準方程和一般方程1.圓心為A(a,b),半徑長為r的圓的方程可表示為,稱為圓的標準方程.2.圓的一般方程為,其中圓心是,半徑長為.圓的一般方程的特點:①x2和y2的系數(shù)相同,不等于0;②沒有xy這樣的二次項;
2025-07-17 19:29
【摘要】OCM(x,y)復習回顧222)()(rbyax????圓心C(a,b),半徑r(2)方法:圓的標準方程的求法:待定系數(shù)法、幾何法;x2+y2+Dx+Ey+F=0把圓的標準方程(x-a)2+(y-b)2=r2展開,得?22222202
2024-08-15 08:50
【摘要】圓的一般方程教學目標?1、掌握圓的一般方程及一般方程的特點?2、能將圓的一般方程化為圓的標準方程?3、能用待定系數(shù)法由已知條件導出圓的方程?4、培養(yǎng)學生數(shù)形結合思想,方程思想,提高學生分析問題及解決問題的能力.?重點:圓的一般方程及一般方程的特點?難點:圓的一般方程的特點及用待定系數(shù)法求圓
2024-11-27 12:16
【摘要】知識回顧:(1)圓的標準方程:(x-a)2+(y-b)2=r2指出下面圓的圓心和半徑:(x-1)2+(y+2)2=2(x+2)2+(y-2)2=5(x+a)2+(y-2)2=a2(a≠0)特征:直接看出圓心與半徑x2+y2+Dx+Ey+F=0
2025-07-27 10:07
【摘要】222)()(rbyax????圓心C(a,b),半徑r圓的標準方程復習xyOC(a,b)Arx2+y2+Dx+Ey+F=0把圓的標準方程(x-a)2+(y-b)2=r2展開,得?22222202??????rb
2024-08-15 18:36
【摘要】圓的一般方程復習引入圓的標準方程是什么?(x-a)2+(y-b)2=r21.圓的標準方程的形式是怎樣的??圓心坐標為(a,b)半徑為r即的形式1、若把圓的標準方程(x-a)2+(y-b)2=r2展開后,會得
2024-11-27 12:43
【摘要】圓的標準方程的形式是怎樣的?其中圓心的坐標和半徑各是什么?復習回顧:x2+y2=r2如果圓心在原點,半徑為r,此時圓的方程是什么?想一想,若把圓的標準方程展開后,會得出怎樣的形式?圓的一般方程:證明:[定義]:圓的一般方程思考表示圓的充分必要條件是什么?圓的一般形式X2+
2024-11-10 23:21
【摘要】圓的一般方程【課前練習】(-1,2),與y軸相切(x+1)2+(y-2)2=1P(5,1),圓心在C(8,3),圓方程(x-8)2+(y-3)2=13A(4,9)、B(6,3),以AB為直徑的圓的方程是(x-5)2+(y-6)2=104.已知一曲線是與定點O(0,0),A(3,0)距離的比是21求
2025-07-27 12:37
【摘要】圓的標準方程1、情境設置:在直角坐標系中,確定直線的基本要素是什么?圓作為平面幾何中的基本圖形,確定它的要素又是什么呢?什么叫圓?在平面直角坐標系中,任何一條直線都可用一個二元一次方程來表示,那么,原是否也可用一個方程來表示呢?如果能,這個方程又有什么特征呢?探索研究:2、探索研究:確定圓的基本條件為圓心和半徑,設圓的圓心坐標為A(a,b),半徑為r。(其中a、b、r都是常數(shù)
2025-07-17 19:26