【摘要】!v*^:@8O'~.b5W2]4d:W(l7D.L/M+g0P-X4z.D(W圓柱坐標(biāo),m,W4a1@*?4_*Z$z%y)U"y5}&g*x!m$er=5*@$VN9s,l6a3
2025-08-07 15:05
【摘要】PROE常用曲線方程圓柱坐標(biāo)方程:r=5theta=t*3600z=(sin(*theta-90))+24*t.笛卡兒坐標(biāo)標(biāo)方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))(Helicalcurve)圓柱坐標(biāo)(cylindrical)方程:r=ttheta=
2025-07-27 18:29
【摘要】常用曲線的極坐標(biāo)方程(3)------圓錐曲線的極坐標(biāo)方程教學(xué)目標(biāo)1.進(jìn)一步學(xué)習(xí)在極坐標(biāo)系求曲線方程2.求出并掌握?qǐng)A錐曲線的極坐標(biāo)方程教學(xué)重點(diǎn)1.圓錐曲線極坐標(biāo)方程的統(tǒng)一形式2.方程中字母的幾何意義情境1:直線與圓在極坐標(biāo)系下都有確定的方程,我們熟悉的圓錐曲線呢?
2024-11-15 02:53
【摘要】......曲線和方程(二)教學(xué)目標(biāo):(一)知識(shí)要求:根據(jù)已知條件求平面曲線方程的基本步驟.(二)能力訓(xùn)練要求:1.會(huì)由已知條件求一些簡(jiǎn)單的平面曲線的方程.2.會(huì)判斷曲線和方程的關(guān)系.(三)德育滲透目的:
2025-04-20 02:42
【摘要】曲線和方程(二)教學(xué)目標(biāo):(一)知識(shí)要求:根據(jù)已知條件求平面曲線方程的基本步驟.(二)能力訓(xùn)練要求:1.會(huì)由已知條件求一些簡(jiǎn)單的平面曲線的方程.2.會(huì)判斷曲線和方程的關(guān)系.(三)德育滲透目的:培養(yǎng)學(xué)生的數(shù)學(xué)修養(yǎng),提高學(xué)生的分析問(wèn)題、解決問(wèn)題的能力.教學(xué)重點(diǎn)求曲線方程的“五步”思路.教學(xué)難點(diǎn)依據(jù)題目特點(diǎn),建立恰當(dāng)?shù)淖鴺?biāo)系,考察曲線的點(diǎn)與方程的
2025-04-20 01:59
【摘要】圓柱坐標(biāo)方程:r=5theta=t*3600z=(sin(*theta-90))+24*t.笛卡兒坐標(biāo)標(biāo)方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))(Helicalcurve)圓柱坐標(biāo)(cylindrical)方程:r=ttheta=10+t*(20*360)
2025-07-28 07:16
【摘要】proe曲線方程(差不多全了)圓柱坐標(biāo)方程:r=5theta=t*3600z=(sin(*theta-90))+24*t.笛卡兒坐標(biāo)標(biāo)方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))(Helicalcurve)圓柱坐標(biāo)(cylindrical)方程:r=t
2025-07-26 20:39
【摘要】.龍文教育個(gè)性化輔導(dǎo)授課案教師:劉嬌學(xué)生:日期:星期:時(shí)段:課題曲線與方程學(xué)情分析教學(xué)目標(biāo)與考點(diǎn)分析1.考查方程的曲線與曲線的方程的對(duì)應(yīng)關(guān)系.2.利用直接法或定義法求軌跡方程.3.結(jié)合平面向量知識(shí)能確定動(dòng)點(diǎn)軌跡,并會(huì)研究軌跡的有關(guān)性質(zhì).教學(xué)重點(diǎn)難
2025-08-10 10:51
【摘要】圓柱坐標(biāo)方程:r=5theta=t*3600z=(sin(*theta-90))+24*t圖1.笛卡兒坐標(biāo)標(biāo)方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))圖2(Helicalcurve)圓柱坐標(biāo)(cylindrical)方程:r=ttheta=1
【摘要】Pro/E各種曲線方程集合圓柱坐標(biāo)方程:r=5theta=t*3600z=(sin(*theta-90))+24*t.笛卡兒坐標(biāo)標(biāo)方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))(Helicalcurve)圓柱坐標(biāo)(cylindrical)方程:r=tthet
【摘要】曲線的參數(shù)方程教學(xué)目標(biāo):1.通過(guò)分析拋物運(yùn)動(dòng)中時(shí)間與運(yùn)動(dòng)物體位置的關(guān)系,寫(xiě)出拋物運(yùn)動(dòng)軌跡的參數(shù)方程,體會(huì)參數(shù)的意義。2.分析圓的幾何性質(zhì),選擇適當(dāng)?shù)膮?shù)寫(xiě)出它的參數(shù)方程。3.會(huì)進(jìn)行參數(shù)方程和普通方程的互化。教學(xué)重點(diǎn):根據(jù)問(wèn)題的條件引進(jìn)適當(dāng)?shù)膮?shù),寫(xiě)出參數(shù)方程,體會(huì)參數(shù)的意義。參數(shù)方程和普通方程的互化。教學(xué)難點(diǎn):根據(jù)幾何性質(zhì)選取恰當(dāng)?shù)膮?shù),建立曲線的參數(shù)方程。參數(shù)方程和
2025-06-28 15:21
【摘要】第九章 求曲線(或直線)方程解析幾何求曲線(或直線)的方程一、基礎(chǔ)知識(shí):1、求曲線(或直線)方程的思考方向大體有兩種,一個(gè)方向是題目中含幾何意義的條件較多(例如斜率,焦距,半軸長(zhǎng),半徑等),那么可以考慮利用幾何意義求出曲線方程中的要素的值,從而按定義確定方程;另一個(gè)方向是
2025-07-28 00:15
【摘要】曲線和方程說(shuō)課貴州師大附中林平?一、教材及教學(xué)對(duì)象分析?二、教學(xué)手段和方法?三、學(xué)法?四、教學(xué)過(guò)程?五、教學(xué)效果預(yù)測(cè)一、教材及教學(xué)對(duì)象分析?1.教材的地位和作用?2.教學(xué)對(duì)象分析?3.教學(xué)重點(diǎn)和難點(diǎn)分析?4.教學(xué)目標(biāo)分析二、教學(xué)手段和方法
2025-08-04 17:43
【摘要】Pro/E各種曲線方程集合圓柱坐標(biāo)方程:r=5theta=t*3600z=(sin(*theta-90))+24*t此主題相關(guān)圖片如下:.笛卡兒坐標(biāo)標(biāo)方程:a=10x=3*a*t/(1+(t^3))y=3*a*(t^2)/(1+(t^3))此主題相關(guān)圖片如下:(Helicalcurve)圓柱坐標(biāo)(cylin
2025-07-26 15:52
【摘要】雙曲線的標(biāo)準(zhǔn)方程(第一課時(shí)) ?。ㄒ唬┙虒W(xué)目標(biāo) 掌握雙曲線的定義,會(huì)推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程,能根據(jù)條件求簡(jiǎn)單的雙曲線標(biāo)準(zhǔn)方程. (二)教學(xué)教程 【復(fù)習(xí)提問(wèn)】 由一位學(xué)生口答,教師板書(shū). 問(wèn)題:橢圓的第一定義是什么? 問(wèn)題:橢圓的標(biāo)準(zhǔn)方程是怎樣的? 【新知探索】 ?。p曲線的概念 如果把上述定義中的“距離的和”改為“距離的差”,那么點(diǎn)的軌跡
2025-07-17 19:04