【摘要】Ozyx第9章重積分二重積分的概念與性質(zhì)2重積分是定積分的推廣和發(fā)展.分割、取近似、求和、取極限.定積分的被積函數(shù)是一元函數(shù),而二重、三重積分的被積函數(shù)重積分有其廣泛的應(yīng)用.序言其同定積分一樣也是某種確定和式的極限,其基本思想是四
2025-08-04 17:21
【摘要】第一節(jié)二重積分的概念與性質(zhì)一、二重積分的概念二、二重積分的性質(zhì)三、小結(jié)思考題第九章重積分柱體體積=底面積×高特點(diǎn):平頂.柱體體積=?特點(diǎn):曲頂.),(yxfz?D1.曲頂柱體的體積一、二重積分的概念播放求曲頂柱體的體積采用“分
2024-10-22 09:33
【摘要】第六節(jié)二重積分的概念及性質(zhì)一、引例二、二重積分的定義三、二重積分的性質(zhì)一、引例解分三步解決這個(gè)問(wèn)題.引例1質(zhì)量問(wèn)題.已知平面薄板D的面密度(即單位面積的質(zhì)量)是點(diǎn)(x,y)的連續(xù)函數(shù),求D的質(zhì)量.),(x???(1)分割將D用兩組曲線任意分割成n個(gè)小塊
2025-07-23 20:18
【摘要】一、問(wèn)題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題第一節(jié)二重積分的概念與性質(zhì)柱體(cylindricalbody)體積=底面積×高特點(diǎn):平頂.曲頂柱體體積=?特點(diǎn):曲頂(curvedvertexsurface).),(yxfz?D1.曲頂柱體的體積
2024-09-03 12:46
【摘要】上一頁(yè)下一頁(yè)主頁(yè)返回退出上一頁(yè)下一頁(yè)主頁(yè)(一)教學(xué)目的:掌握二重積分的定義和性質(zhì).(二)教學(xué)內(nèi)容:二重積分的定義和性質(zhì).(1)基本要求:掌握二重積分的定義和性質(zhì),二重積分的充要條件,了解有界閉區(qū)域上的連續(xù)函數(shù)的可積性.(2)較高要求:平面點(diǎn)集可求面積的充要條件.上一頁(yè)下一頁(yè)主頁(yè)返回退
2024-11-06 16:40
【摘要】第九章一元函數(shù)積分學(xué)多元函數(shù)積分學(xué)重積分曲線積分曲面積分重積分??????????????????第二類曲面積分第一類曲面積分曲面積分第二類曲線積分第一類曲線積分曲線積分三重積分二重積分重積分?????公
2025-07-26 13:52
【摘要】第二節(jié)、二重積分的性質(zhì)假設(shè)以下各積分存在性質(zhì)1?????DDdyxfkdyxkf??),(),(k為常數(shù)性質(zhì)2?????????DDDdyxgDdyxfdyxgyxf???),(),()],(),([性質(zhì)3(可加性)???2121,DDDDD??且若(除分界線)??????
2024-10-15 12:29
【摘要】§二重積分?二重積分的概念?二重積分的性質(zhì)?二重積分的計(jì)算?小結(jié)?思考與練習(xí)在這一節(jié),我們將把一元函數(shù)定積分的概念及基本性質(zhì)推廣到二元函數(shù)的定積分,即二重積分,為引出二重積分的概念,我們先來(lái)討論兩個(gè)實(shí)際問(wèn)題。,平面的閉區(qū)域設(shè)有一立體,它的底是DxOy軸的柱面,線平行于的邊界曲線為準(zhǔn)
2024-10-03 19:02
【摘要】1第十章重積分一元函數(shù)積分學(xué)多元函數(shù)積分學(xué)重積分曲線積分曲面積分2三、二重積分的性質(zhì)§二重積分的概念與性質(zhì)一、引例二、二重積分的定義與可積性四、曲頂柱體體積的計(jì)算3解法:類似定積分解決問(wèn)題的思想:一、引例給定曲頂柱體
2025-01-22 14:43
【摘要】上頁(yè)下頁(yè)返回第十章二重積分計(jì)算二重積分的步驟:1.先畫出積分區(qū)域的草圖;3.合理選擇積分的次序;4.確定二次積分上下限———關(guān)鍵既要考慮積分區(qū)域類型,又要看被積函數(shù)的特點(diǎn)——下節(jié)課研究5.計(jì)算兩次定積分—求出結(jié)果2.確定積分區(qū)域的類型;回顧上頁(yè)
2024-12-11 03:07
【摘要】第一節(jié)二重積分的概念與性質(zhì)一、問(wèn)題的提出二、二重積分的概念三、二重積分的性質(zhì)四、小結(jié)思考題柱體體積=底面積×高特點(diǎn):平頂.柱體體積=?特點(diǎn):曲頂.),(yxfz?D1.曲頂柱體的體積一、問(wèn)題的提出播放求曲頂柱體的體積采用“分割、
2025-02-24 12:14
【摘要】*三、二重積分的換元法第二節(jié)一、利用直角坐標(biāo)計(jì)算二重積分二、利用極坐標(biāo)計(jì)算二重積分機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束二重積分的計(jì)算法第十章一、利用直角坐標(biāo)計(jì)算二重積分且在D上連續(xù)時(shí),0),(?yxf當(dāng)被積函數(shù)???????bxaxyxD)()(:21
2025-02-24 16:16
【摘要】§4二重積分的變量交換教學(xué)重點(diǎn):二重積分的變量變換(主要為線性變換,(廣義)極坐標(biāo)變換)教學(xué)內(nèi)容:教學(xué)難點(diǎn):變量變換后積分限的確定一、二重積分的變量交換公式:.)
【摘要】如果積分區(qū)域?yàn)椋?bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標(biāo)系計(jì)算二重積分[X-型])(2xy??abD)(1xy??Dba)(2xy??)(1xy??為曲頂
2025-01-21 17:12
【摘要】一、利用直角坐標(biāo)系計(jì)算二重積分二、小結(jié)思考題第二節(jié)二重積分的計(jì)算法(1)如果積分區(qū)域?yàn)椋?bxa??).()(21xyx????其中函數(shù)、在區(qū)間上連續(xù).)(1x?)(2x?],[ba一、利用直角坐標(biāo)系(rightanglecoordinatesys
2024-09-03 12:45