【摘要】§柯西積分公式數(shù)學(xué)系樊曉香一、問題的提出回顧:柯西積分定理??若在閉域上解析,fzD??0Cfzdz??sin,Czdz?如如果被積函數(shù)在D內(nèi)有奇點(diǎn),sin,如Czdzzi??C0zD
2025-08-04 17:10
【摘要】復(fù)變函數(shù)與積分變換ComplexAnalysisandIntegralTransform柯西積分定理及其應(yīng)用回顧????ccc,DD,CDxyxyfzdzudxvdyvdxudyuvvuuvfz???????
2024-08-24 18:22
【摘要】DC0z?柯西積分公式分析:內(nèi)解析,則區(qū)域及其所圍成的在簡單正向閉曲線若設(shè)DCzfDz)(,?0??Cdzzzzf0)(閉路變形定理dzzzzfzz?????00)()(),()(00???zfzfdzzzzfzz?????0001)()(20zif??內(nèi)的任一點(diǎn),
2025-08-08 20:19
【摘要】1§柯西積分公式復(fù)習(xí):C(2)C如果0z在C的內(nèi)部,則2i??0z0?1n?整數(shù)如果0z在C的外部,則01zz?dzC?0?01zz?在C圍成01()n?(1)若()fz在單連通解析,則()fz任何一條
2025-07-26 09:31
【摘要】第五講原函數(shù)與不定積分Cauchy積分公式解析函數(shù)的高階導(dǎo)數(shù)?1.原函數(shù)與不定積分的概念?2.積分計(jì)算公式§原函數(shù)與不定積分1.原函數(shù)與不定積分的概念由§2基本定理的推論知:設(shè)f(z)在單連通區(qū)域B內(nèi)解析,則對B中任意曲線C,積分?cfdz與路徑
2025-05-19 01:34
【摘要】1§柯西公式(一)有界區(qū)域的柯西積分公式(二)無界區(qū)域的柯西積分公式(三)解析函數(shù)的高階導(dǎo)數(shù)(四)例題第二章第四節(jié)柯西公式2(一)有界區(qū)域的柯西積分公式若f(z)在閉單通區(qū)域B上解析,l為B區(qū)域的境界線,a為B內(nèi)的任一點(diǎn),則有柯西公式????dzazz
2025-07-25 20:19
【摘要】§內(nèi)容回顧()dbafxx??定積分定義定積分的幾何意義:01lim()niiifx??????各部分面積的代數(shù)和可積的充分條件:1.2.且只有有限個(gè)間斷點(diǎn)定積分的性質(zhì)(設(shè)所列定積分都存在)0d)(??aaxxf1.dbax?(
2024-11-06 21:17
【摘要】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-19 01:35
【摘要】2設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv???????,)(babauvdxuv?????,??????bababadxvudxvu
2025-05-15 04:24
【摘要】特點(diǎn):)(0xf?)(0xf??第七節(jié)泰勒公式一、泰勒公式的建立)(xfxy)(xfy?o))(()(000xxxfxf????以直代曲0x)(1xp在微分應(yīng)用中已知近似公式:需要解決的問題如何提高精度?如何估計(jì)誤差?xx的一次多項(xiàng)式
2025-08-04 16:25
【摘要】1微積分基本公式問題的提出積分上限函數(shù)及其導(dǎo)數(shù)牛頓—萊布尼茨公式小結(jié)思考題作業(yè)(v(t)和s(t)的關(guān)系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過定積分的物理意義,例變速直線運(yùn)動中路
2025-02-24 10:32
【摘要】1§3-3Cauchy積分公式和高階導(dǎo)數(shù)公式一、解析函數(shù)的Cauchy積分公式二、解析函數(shù)的高階導(dǎo)數(shù)定理三Δ、解析函數(shù)的實(shí)部和虛部與調(diào)和函數(shù)2.,0中一點(diǎn)為為一單連通區(qū)域設(shè)DzD,d)(0??Czzzzf一般不為零所以.)(,)(00不解析在那
2025-04-29 08:35
【摘要】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動,已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2024-08-24 08:39
【摘要】第二章復(fù)變函數(shù)的積分§1.復(fù)變函數(shù)的積分設(shè)為復(fù)平面上以為起點(diǎn),而以為終點(diǎn)的光滑曲線(有連續(xù)導(dǎo)數(shù)),在上取一系列分點(diǎn)把分為段,在每一小段上任取一點(diǎn)作和數(shù),當(dāng),且每一小段的長度趨于零時(shí),若存在,則稱沿可積,稱為沿的路徑積分。為積分路徑,記為【若為圍線(閉的曲線),則記為】。(在上取值,即在上變化)。積分的計(jì)算,,,于是,所以復(fù)變函數(shù)的積分可以歸
2024-08-28 01:33
【摘要】費(fèi)馬(fermat)引理第六節(jié)微分中值定理且在x0處可導(dǎo),若)(?或證則0?0?xyo0x設(shè)f(x)在點(diǎn)x0的某鄰域U(x0)內(nèi)有定義,有則例如,32)(2???xxxf).1)(3(???xx,]3,1[上連續(xù)在?,)3,1(上可
2025-07-25 11:20