【正文】
m.Excavating tunnel in soft rock stratum usually will cause accident due to the plex geological conditions and mechanical behaviors of soft rocks. Many methods of support techniques have been proposed consequently. For example, the New Austrian Tunneling Method (NATM) (Han, 1987) which is also known as sequential excavation method (SEM) is a popular method in modern tunnel design and (1970)andal., 2006) and mudstone (Yoshinaka etLin, 1999). According to the work ofGuo, 1996Stability1. IntroductionThe West ends of diversion (high pressure) tunnels 1 and 2 of Jinping II hydropower station were located in the chlorite schist stratum with the length of about 400Large deformation。Waterweakening effect。Soft rock。Jing HoubAbstractDue to the weakness in mechanical properties of chlorite schist and the high in situ stress in Jinping II hydropower station, the rock mass surrounding the diversion tunnels located in chlorite schist was observed with extremely large deformations. This may significantly increase the risk of tunnel instability during excavation. In order to assess the stability of the diversion tunnels laboratory tests were carried out in association with the petrophysical properties, mechanical behaviors and waterweakening properties of chlorite schist. The continuous deformation of surrounding rock mass, the destruction of the support structure and a largescale collapse induced by the weak chlorite schist and high in situ stress were analyzed. The distributions of pressive deformation in the excavation zone with large deformations were also studied. In this regard, two reinforcement schemes for the excavation of diversion tunnel bottom section were proposed accordingly. This study could offer theoretical basis for deep tunnel construction in similar geological conditions.KeywordsDeep tunnel。Zhen Lia,參考文獻(xiàn)[1] 袁亮,低透氣煤層群無(wú)煤柱煤與瓦斯共采理論與實(shí)踐[M].北京:煤炭工業(yè)出版社,2008[2] 趙玉成,循環(huán)載荷作用下煤的力學(xué)性質(zhì)及聲發(fā)射特征演化規(guī)律,煤,2013(165) 15[3] 張里程,巷道圍巖穩(wěn)定性分析研究的現(xiàn)狀與存在問(wèn)題. 徐州工程學(xué)報(bào),,33[4] 薛 琳,直墻拱形隧道圍巖粘彈性位移解析解. 巖土工程學(xué)報(bào),1996(5) :96~101[5] 朱大勇,錢(qián)七虎,周早生復(fù)雜形狀硐室圍巖應(yīng)力彈性解析分析. 巖石力學(xué)與工程學(xué)報(bào), 1999(4) :402~404 [6] 張路青,楊志法,呂愛(ài)鐘. 兩平行的任意形狀硐室圍巖位移場(chǎng)解析法研究及其在位移反分析中的應(yīng)用. 巖石力學(xué)與工程學(xué)報(bào),2000(3) :584~589[7] 朱素平,周楚良. 地下圓形隧道圍巖穩(wěn)定性的粘彈性力學(xué)分析. 同濟(jì)大學(xué)學(xué)報(bào),1994(9) :229~233[8] 朱素平,周楚良. 地下圓形隧道圍巖穩(wěn)定性的粘彈性力學(xué)分析. 同濟(jì)大學(xué)學(xué)報(bào),1994(9) :229~233[9] 程 樺,孫 鈞. 軟弱圍巖復(fù)合式隧道襯砌力學(xué)機(jī)理非線(xiàn)性大變形數(shù)值分析. 巖石力學(xué)與工程學(xué)報(bào),1997(4) :327~336[10] 譚云亮,王泳嘉. 巷道圍巖塑性狀態(tài)判定分析方法. 工程地質(zhì)學(xué)報(bào), 1996(2) :63~68[11] Shi GH,Goodman RE. Two2dimensional discontinuous analysis. Int. . Anal. Methods Geomech,1985(7) :541~556[12] 鄔愛(ài)清,任 放,等. DDA數(shù)值模型及其在巖體工程上的初步應(yīng)用研究. 巖石力學(xué)與工程學(xué)報(bào),1997(5) :411~417[13] Hart R,Cundall PA,LemosJ. Formulationsof three2dimensional distinctelement model. Part Ⅱ:Mechanical calculationof a 豎向應(yīng)力stemposedofmanypolyhedral blocks. International Journal of Rock Mechanics andMiningSciences,1988(3) :117~125[14] 任青文. 塊體單元法及其在巖體穩(wěn)定分析中的應(yīng)用. 河海大學(xué)學(xué)報(bào), 1995(1) :1~7[15] 陸小敏,任青文. 基于有限元和塊體元的地下硐室變形及穩(wěn)定性分析. 工程力學(xué),2001(4) :60~66[16] 許傳華 任青文,地下工程圍巖穩(wěn)定性分析方法研究進(jìn)展,金屬礦山,2003(2)[17] 劉承論. 基于解析積分求解影響系數(shù)的三維FSM邊界元法. 巖石力學(xué)與工程學(xué)報(bào),2002(8) :1243~1248[18] 陶振宇. 巖石力學(xué)理論與實(shí)踐. 北京:水利出版社,1979[19] 李術(shù)才,李樹(shù)忱,朱維申. 三峽右岸地下電站廠(chǎng)房圍巖穩(wěn)定性斷裂損傷分析. 巖土力 學(xué),2000(3) :193~197[20] 朱維申,何滿(mǎn)潮. :科學(xué)出版社,1996[21] 曾小清,張慶賀. 隧道施工過(guò)程的解析與數(shù)值結(jié)合方法. 巖土工程學(xué)報(bào),1996,18(5) :14~17[22] 張玉詳. 巷道圍巖穩(wěn)定性識(shí)別模糊神經(jīng)網(wǎng)絡(luò)與模糊數(shù)學(xué)研究. 巖土工程學(xué)報(bào),1998(3) :90~93翻譯部分原文Analysis of mechanical behavior of soft rocks and stability control in deep tunnelsHui Zhoua,和75176。當(dāng)裂隙處于45176。時(shí)的情況。②裂隙方位對(duì)巷道圍巖穩(wěn)定性的影響無(wú)論裂隙處于什么位置,由于裂隙和巷道的尺寸比較起來(lái)太小,所以對(duì)巷道的應(yīng)力位移分布區(qū)域沒(méi)有明顯的影響。巷道的兩側(cè)存在最大的豎向應(yīng)力。①裂隙位置對(duì)巷道圍巖穩(wěn)定性的影響隨著裂隙所處徑向夾角的增加,巷道整體的應(yīng)力分布并沒(méi)有明顯的變化。灰?guī)r處于四者之間。④巖石性質(zhì)變化非連續(xù)結(jié)構(gòu)面對(duì)巷道穩(wěn)定性的影響 當(dāng)巖性發(fā)生改變時(shí),應(yīng)力和位移分布區(qū)域并沒(méi)有明顯的變化,但是五種巖性中,砂巖和石英巖最為穩(wěn)定。時(shí)位移和應(yīng)力隨之增加,當(dāng)角度繼續(xù)增加到180176。當(dāng)角度由0176。最大應(yīng)力出現(xiàn)在兩側(cè),隨著尺寸的增加,兩側(cè)由拉應(yīng)力變?yōu)閴簯?yīng)力。5主要結(jié)論①非連續(xù)結(jié)構(gòu)面高度對(duì)巷道圍巖穩(wěn)定性的影響當(dāng)非連續(xù)結(jié)構(gòu)面的高度增加時(shí),巷道的水平位移和應(yīng)力分布始終關(guān)于y軸對(duì)稱(chēng);其中最大位移出現(xiàn)在頂部和底部,最大應(yīng)力出現(xiàn)在兩側(cè)和底部;隨著非連續(xù)結(jié)構(gòu)面距離巷道越來(lái)越近但是并沒(méi)有貫穿巷道過(guò)程中,巷道上的應(yīng)力也隨之增加,但是當(dāng)非連續(xù)結(jié)構(gòu)面貫穿巷道,巷道上的應(yīng)力不增反減。不同角度非連續(xù)結(jié)構(gòu)面的豎直應(yīng)力 圖414不同夾角裂紋尖端的豎向應(yīng)力由圖411和圖412可以看出:裂隙位置的改變,并不影響巷道豎向應(yīng)力分布的對(duì)稱(chēng)性,但是影響了豎向應(yīng)力分布的區(qū)域大小。時(shí)的豎向應(yīng)力云圖如圖413所示。、75176。、45176。、15176。處夾角變化的豎向應(yīng)力裂隙處于巷道拱形處45176。裂紋尖端的水平應(yīng)力又隨之增加。水平應(yīng)力隨之減少,隨著角度再?gòu)?5176。增加到30176。在巷道的底部和兩側(cè)存在拉應(yīng)力。(a)θ=0 (b)θ=15 (c)θ=30(e)θ=60 (d)θ=45 (f)θ=75(g)θ=90圖411裂隙處于45176。、90176。、60176。、30176。且隨著夾角變化0176。裂隙方位的變化對(duì)圍巖穩(wěn)定性的影響 (1)徑向45176。巷道的頂部和底部出現(xiàn)了拉應(yīng)力。并且,當(dāng)角度從60176。時(shí),裂紋尖端的豎向應(yīng)力也隨之減小,當(dāng)角度繼續(xù)增加到90176。當(dāng)角度從0176。(a)θ=0 (b)θ=15 (c)θ=30(d)θ=45 (e)θ=60 (f)θ=75 (g)θ=90圖49不同拱腳角度非連續(xù)結(jié)構(gòu)面的豎直應(yīng)力圖410不同夾角裂紋尖端的豎向應(yīng)力由圖49和圖410可以看出:裂隙位置的改變,并不影響巷道豎向應(yīng)力分布的對(duì)稱(chēng)性,但是影響了豎向應(yīng)力分布的區(qū)域大小。、90176。、60176。、30176。(2)拱腳處夾角變化的豎向應(yīng)力裂隙處于拱腳處,且隨著夾角變化為0176。增加到15時(shí),裂紋尖端的水平應(yīng)力也隨之增加,當(dāng)角度繼續(xù)增加到90176。巷道一直處于受壓狀態(tài),巷道的底部和頂部存在巷道的最大水平應(yīng)力。時(shí)的水平應(yīng)力云圖如圖47所示。、75176。、45176。、15176。裂紋尖端的豎向應(yīng)力隨之減小。裂紋尖端的豎向應(yīng)力也隨之增加,當(dāng)角度繼續(xù)從15176。另外,當(dāng)角度從0176。增加到90176。增加到75176。增加到30176。巷道的兩側(cè)存在豎向應(yīng)力最大值。的豎向應(yīng)力云圖如圖45所示。、75176。、45176。、15176。裂隙尖端的水平應(yīng)力又逐漸減少。時(shí),裂隙尖端的水平應(yīng)力也逐漸增加,但是當(dāng)角度從60176。隨著角度的增加,從0176。 (a)θ=0 (b)θ=15 (c)θ=30(d)θ=45 (e)θ=60 (f)θ=75(g)θ=90圖43不同徑向角度非連續(xù)結(jié)構(gòu)面的水平應(yīng)力圖44不同夾角裂紋尖端的水平應(yīng)力由圖43和圖44可以看出:由于裂隙和巷道的尺寸相比較非常小,裂隙位置的改變并不影響巷道整體水平應(yīng)力分布的對(duì)稱(chēng)性,但是影響了水平應(yīng)力分布的區(qū)域大小。、90176。、60176。、30176。 (1)不同徑向夾角裂隙的水平應(yīng)力裂隙處于不用徑向夾角0176。90176。60176。30176。取裂隙與水平方向x軸的夾角分別為0176。③裂隙長(zhǎng)度為20cm,裂隙位于徑向45176。90176。60176。30176。取裂隙與水平方向x軸的夾角分別為0176。七種計(jì)算模型。75176。45176。15176。具體分析方案如下:①裂隙長(zhǎng)度為20cm,沿拱部徑向分布,分析拱部徑向裂隙位置的變化對(duì)圍巖穩(wěn)定性的影響。計(jì)算中采用PLANE182單元?jiǎng)澐志W(wǎng)格,如圖42所示。取巷道埋深1000m,本文實(shí)驗(yàn)試樣為砂巖,上部施加載荷為25Mpa。位移邊界條件為:模型兩側(cè)兩邊施加水平鏈桿,底部固支。(1)數(shù)值計(jì)算模型本章根據(jù)工程中常見(jiàn)的直墻拱形斷面巷道,采用ANSYS軟件建立巷道圍巖的平面應(yīng)變模型。(2)不同摩擦系數(shù)的豎向應(yīng)力 、。(a)f=