【摘要】精品資源第05講函數(shù)最值的應(yīng)用一、最值綜合與應(yīng)用問(wèn)題:(一)知識(shí)歸納:1.最值綜合問(wèn)題:這是中學(xué)數(shù)學(xué)最重要的題型之一,題型非常廣泛. ①幾何圖形的最值問(wèn)題:在平幾、立幾、解幾圖形中求解面積、體積、距離及各種幾何量的最大、最小值;②代數(shù)中的最值問(wèn)題:求解方程(或不等式)的最大、最小解,數(shù)列的最大、最小項(xiàng),變量或代數(shù)式的最大、最小取值,等等;2.最值應(yīng)用問(wèn)題:這是
2025-07-02 16:24
【摘要】精品資源第04講函數(shù)的極值與最值(一)知識(shí)歸納:1.極值:①定義:設(shè)函數(shù)f(x)在x0及附近有定義,如果對(duì)x0附近的所有點(diǎn)都有1)的一個(gè)極大值;2)的一個(gè)極小值.②函數(shù)f(x)的極值只可能在的點(diǎn)x0處(但必須有x0處左、右的導(dǎo)數(shù)值異號(hào))或不可導(dǎo)點(diǎn)x0處取得;若f(x0)是函數(shù)的一個(gè)極值,則f(x)在點(diǎn)x0處的圖象呈山峰狀(或山谷狀).2.最值
2025-07-02 15:33
【摘要】二次函數(shù)課前引入二次函數(shù)是初中函數(shù)的主要內(nèi)容,也是高中學(xué)習(xí)的重要基礎(chǔ).在初中階段大家已經(jīng)知道:二次函數(shù)在自變量取任意實(shí)數(shù)時(shí)的最值情況(當(dāng)時(shí),函數(shù)在處取得最小值,無(wú)最大值;當(dāng)時(shí),函數(shù)在處取得最大值,無(wú)最小值.本節(jié)我們將在這個(gè)基礎(chǔ)上繼續(xù)學(xué)習(xí)當(dāng)自變量在某個(gè)范圍內(nèi)取值時(shí),函數(shù)的最值問(wèn)題..教學(xué)目標(biāo)1、掌握含參數(shù)二次函數(shù)在有限區(qū)間求最值的方法。2、在練習(xí)中讓學(xué)生體會(huì)分類討論
2025-07-02 18:24
【摘要】【做一做】請(qǐng)你畫一個(gè)周長(zhǎng)為10厘米的矩形,算算它的面積是多少?再和你的同伴比一比,發(fā)現(xiàn)了什么?同學(xué)長(zhǎng)寬面積同學(xué)3同學(xué)23厘米2厘米6平方厘米4厘米1厘米4平方厘米同學(xué)1…………長(zhǎng)和寬設(shè)置多少時(shí)矩形面積可以取到最大呢?解:設(shè)長(zhǎng)為
2025-05-15 13:52
【摘要】深圳實(shí)驗(yàn)培訓(xùn)中心2009年暑期初二培訓(xùn)資料姓名月日第4課時(shí)二次函數(shù)的實(shí)際應(yīng)用——面積最大(小)值問(wèn)題知識(shí)要點(diǎn):在生活實(shí)踐中,人們經(jīng)常面對(duì)帶有“最”字的問(wèn)題,如在一定的方案中,花費(fèi)最少、消耗最低、面積最大、產(chǎn)值最高、獲利最多等;解數(shù)學(xué)題時(shí),我們也常常碰到求某個(gè)變量的最大值或最小值之類的問(wèn)題,這就
2025-03-28 06:48
【摘要】精品資源第08講函數(shù)的應(yīng)用(一)知識(shí)歸納:1.對(duì)實(shí)際問(wèn)題進(jìn)行抽象概括:研究實(shí)際問(wèn)題中量與量之間的關(guān)系,確定變量之間的主、被動(dòng)關(guān)系,并用x、y分別表示問(wèn)題中的變量;2.建立函數(shù)模型:將變量y表示為x的函數(shù),在中學(xué)數(shù)學(xué)內(nèi),我們建立的函數(shù)模型一般都是函數(shù)的解析式;3.求解函數(shù)模型:根據(jù)實(shí)際問(wèn)題所需要解決的目標(biāo)及函數(shù)式的結(jié)構(gòu)特點(diǎn)正確選擇函數(shù)知識(shí)求得函數(shù)模型的解,并還原為實(shí)際問(wèn)題
2025-07-31 05:57
【摘要】二次函數(shù)的復(fù)習(xí)應(yīng)用------最值問(wèn)題福州第十五中學(xué)蔡建民2020年05月22日一、復(fù)習(xí):在下列各范圍內(nèi)求函數(shù)的最值:(1)x為全體實(shí)數(shù)(2)1≤x≤2(3)-2≤x≤2322???xxyO-2
2024-10-03 15:47
【摘要】函數(shù)的最值(值域)一、相關(guān)概念1、值域:函數(shù),我們把函數(shù)值的集合稱為函數(shù)的值域。二、基本函數(shù)的值域1、一次函數(shù)的定義域?yàn)镽,值域?yàn)镽;2、二次函數(shù)的定義域?yàn)镽,3、反比例函數(shù)的定義域?yàn)閧x|x0},的值域?yàn)?、指數(shù)函數(shù)的值域?yàn)椤?、對(duì)數(shù)函數(shù)的值域?yàn)镽;6、分式函數(shù)的值域?yàn)?。三、求函?shù)值域的方法(1)觀察法(用非負(fù)數(shù)的性質(zhì),如:;;等)例如:求
2025-05-19 02:04
【摘要】......函數(shù)最值的幾種求法新課程標(biāo)準(zhǔn)中,高中數(shù)學(xué)知識(shí)更加豐富,層次性更強(qiáng),,必須從整體上把握課程標(biāo)準(zhǔn),運(yùn)用主線知識(shí)將高中數(shù)學(xué)知識(shí)穿成串,連成片,織成網(wǎng),才有利于學(xué)生更好的掌握,而函數(shù)的最值問(wèn)題在整個(gè)高中教材中顯得非常重要,為了能系統(tǒng)
2025-05-19 01:56
【摘要】(1)配方法(2)換元法(3)圖象法(4)單調(diào)性法(5)不等式法(6)導(dǎo)數(shù)法(7)數(shù)形結(jié)合法(8)判別式法(9)三角函數(shù)有界性一、求函數(shù)最值的常用方法:最值問(wèn)題是數(shù)學(xué)的重要內(nèi)容之一,是解決數(shù)學(xué)應(yīng)用的基礎(chǔ)。二、典型例題例1:對(duì)每個(gè)實(shí)數(shù)x,設(shè)f(x)是y=2
2024-11-11 00:41
【摘要】......專題三:含絕對(duì)值函數(shù)的最值問(wèn)題1.已知函數(shù)(),若對(duì)任意的,不等式恒成立,求實(shí)數(shù)的取值范圍.不等式化為即:(*)對(duì)任意的恒成立因?yàn)?,所以分如下情況討論:[來(lái)源:學(xué)科網(wǎng)ZXXK]①當(dāng)時(shí),不等式(*)②當(dāng)
2025-03-27 23:42
【摘要】......函數(shù)的單調(diào)性與最值復(fù)習(xí):按照列表、描點(diǎn)、連線等步驟畫出函數(shù)的圖像.圖像在軸的右側(cè)部分是上升的,當(dāng)在區(qū)間[0,+)上取值時(shí),隨著的增大,相應(yīng)的值也隨著增大,如果取∈[0,+),得到,,那么當(dāng)<
【摘要】函數(shù)的單調(diào)性和最值考試要求1、函數(shù)單調(diào)區(qū)間的判定2、利用函數(shù)單調(diào)性求最值典題精講板塊一:函數(shù)的單調(diào)性與單調(diào)區(qū)間1、增函數(shù)、減函數(shù)增函數(shù)減函數(shù)定義一般地,設(shè)函數(shù)f(x)的定義域?yàn)镮,如果對(duì)于定義域I內(nèi)某個(gè)區(qū)間D上的任意兩個(gè)自變量x1,x2當(dāng)x1x2時(shí),都有____________,那么就說(shuō)函數(shù)f(x
2025-05-19 07:45
【摘要】函數(shù)的極值和最值【考綱要求】。.?!局R(shí)網(wǎng)絡(luò)】函數(shù)極值的定義函數(shù)極值點(diǎn)條件函數(shù)的極值求函數(shù)極值函數(shù)的極值和最值函數(shù)在閉區(qū)間上的最大值和最小值【考點(diǎn)梳理】要點(diǎn)一、函數(shù)的極值函數(shù)的極值的定義一般地,設(shè)函數(shù)在點(diǎn)及其附近有定義,(1)若對(duì)于附近的所有點(diǎn),都有,則是函數(shù)的一個(gè)極大值,記作;(2)若對(duì)附近的所有
2025-06-19 04:08
【摘要】....與絕對(duì)值函數(shù)有關(guān)的的參數(shù)最值及范圍問(wèn)題類型二一次項(xiàng)系數(shù)含參數(shù)1已知函數(shù)f(x)=x|x﹣a|+2x,若存在a∈[0,4],使得關(guān)于x的方程f(x)=tf(a)有三個(gè)不相等的實(shí)數(shù)根,則實(shí)數(shù)t的取值范圍是() A. (1,) B. (1,)
2025-06-19 04:01