【正文】
。在該測(cè)試中,F(xiàn)35的機(jī)載航電設(shè)備可以對(duì)多種F22和F15的雷達(dá)實(shí)施干擾和跟蹤(Fulghum, Sweetman, Perrett amp。s avionics were able to jam and track multiple F22 and F15 radars during the exercise (Fulghum, Sweetman, Perrett amp。However, LPI software is not foolproof as demonstrated between tests involving F22s and a CATbird avionics testbed equipped with the F3539。圖片授權(quán):Ronald W. Brower amp。進(jìn)入作戰(zhàn)包線后,接近F22的一系列目標(biāo)將自動(dòng)獲得更高的跟蹤精度。Image 6: Engagement boundaries for the AN/APG77. Targets automatically receive higher tracking accuracy as they enter engagement boundaries in proximity to the F22. The boundary concept facilitates automated sensor tasking and efficient sensor usage which contributes towards increased situational awareness and fewer emissions by the array (Ronald W. Brower, 2001). Image Credit: Ronald W. Brower amp。越遠(yuǎn)的目標(biāo)獲得更少的雷達(dá)觀測(cè);當(dāng)這些目標(biāo)不斷接近F22時(shí),他們將被識(shí)別和按優(yōu)先級(jí)排序;而后,當(dāng)這些目標(biāo)距離足夠近時(shí),F(xiàn)22將選擇與其交戰(zhàn)或回避,F(xiàn)22的雷達(dá)將持續(xù)跟蹤這些目標(biāo)。 as they get closer to the F22, they will be identified and prioritized。s signals are managed in intensity, duration and space to maintain the pilot39。在AESA系統(tǒng)中增加低截獲(LPI)軟件設(shè)計(jì),將在一定程度上降低AESA被RWR偵測(cè)的風(fēng)險(xiǎn)。David Axe將RWR的功能簡(jiǎn)單類比為在黑暗房間中尋找一個(gè)隨身攜帶閃光燈的人。此外,擁有如此大數(shù)量的T/R組件,使得1475型雷達(dá)很難使用低截獲模式,從而更容易被雷達(dá)告警接收機(jī)(RWR)系統(tǒng)偵獲,例如:ALR94型RWR。即便南京電子技術(shù)研究所(NRIET)或中國(guó)雷華電子技術(shù)研究所(607研究所)擁有足夠先進(jìn)的封裝技術(shù)將1856個(gè)T/R組件裝進(jìn)J20的鼻子,如此密度的T/R組件結(jié)構(gòu)將造成嚴(yán)重的散熱問題。J20的機(jī)頭鼻錐空間比F22更大,該款噴氣式飛機(jī)機(jī)身更長(zhǎng),重量更大,目前,尚未見有關(guān)于機(jī)頭鼻錐部位具體容量參數(shù)的相關(guān)報(bào)道。s single greatest difficulty in designing the ZukAE was the AESA39。s AESA is the Type 1475. While the nose volume of the J20 is certainly large, the jet overall is longer and heavier than the F22, no credible figures for nose volume were available at the time of this publication. As with the J16 T/R figure, the J20 figure is substantially greater than that of the most advanced US and Russian designs. Even if the Nanjing Research Institute of Electronics Technology (NRIET) or the China Leihua Electronic Technology Research Institute (607 Institute) was able to develop sufficient packaging technology that would enable 1,856 T/R modules within the J2039。Image 5: The sixth and most recent (as of January 2015) unveiled J20 testing aircraft model 2015.圖5:最新曝光(2015年1月)的第六代J20測(cè)試驗(yàn)證機(jī)(代號(hào):2015)。通過(guò)兩代AESA系統(tǒng)設(shè)計(jì),中國(guó)航空工業(yè)技術(shù)水平趕超美國(guó)和俄羅斯同行的可能性值得懷疑,因此,作者懷疑1760個(gè)T/R組件的信息源于對(duì)未經(jīng)證實(shí)圖片的武斷猜測(cè),因而造成了J16 AESA系統(tǒng)比美國(guó)和俄羅斯最先進(jìn)AESA系統(tǒng)多260個(gè)T/R組件的說(shuō)法。如果說(shuō)裝備J16的AESA雷達(dá)確實(shí)擁有1760個(gè)T/R組件,那么這將說(shuō)明中國(guó)航空工業(yè)在T/R組件封裝技術(shù)方面已經(jīng)超越俄羅斯,因?yàn)镹036雷達(dá)據(jù)信已是目前俄羅斯戰(zhàn)機(jī)裝備的最先進(jìn)AESA雷達(dá)系統(tǒng)。The J16 utilizes the Su27BS airframe which has room for a meter aperture in the nose which is on par with the F15 and F22 in terms of volume (Kopp, 2012). The 1,500 element N036 Tikhomirov NIIP AESA has a similar aperture size to the electronically scanned array (ESA) IrbisE radar featured in the Su35 series of fighters which shares the base Su27 airframe. If the 1,760 T/R figure is correct it would indicate the Chinese aerospace industry has eclipsed Russian T/R module packaging technology as the N036 is arguably the most advanced Russian fighter mounted AESA. Similarly, the most advanced US fighter mounted AESAs such as the APG77(V)2 and APG82(V)1 contain 1,500 T/R modules*. While the prospect of Chinese avionics firms reaching parity with US and Russian firms is more plausible within two generations of designs, the author is skeptical the 1,760 figure is correct given the unsubstantiated nature of the image and the