【摘要】二次函數(shù)知識點(diǎn)一、二次函數(shù)概念:1.二次函數(shù)的概念:一般地,形如(是常數(shù),)的函數(shù),叫做二次函數(shù)。這里需要強(qiáng)調(diào):和一元二次方程類似,二次項(xiàng)系數(shù),而可以為零.二次函數(shù)的定義域是全體實(shí)數(shù).2.二次函數(shù)的結(jié)構(gòu)特征:⑴等號左邊是函數(shù),右邊是關(guān)于自變量的二次式,的最高次數(shù)是2.⑵是常數(shù),是二次項(xiàng)系數(shù),是一次項(xiàng)系數(shù),是常數(shù)項(xiàng).二、二次函數(shù)的基本形式1.二次函數(shù)基本形式
2025-06-29 08:29
【摘要】講課人:鞏紅軍樂家彎學(xué)校初中數(shù)學(xué)組退出一、定義二、頂點(diǎn)與對稱軸三、解析式的求法四、圖象位置與a、b、c、的正負(fù)關(guān)系一、定義二、頂點(diǎn)與對稱軸四、圖象位置與a、b、c、的正負(fù)關(guān)系一般地,如果y=ax2+bx+c(a,b,c
2024-11-11 01:42
【摘要】一、二次函數(shù)的定義:一般地,形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù).要點(diǎn):(1)關(guān)于x的代數(shù)式一定是整式,a,b,c為常數(shù),且a≠0.(2)等式的右邊最高次數(shù)為2,可以沒有一次項(xiàng)和常數(shù)項(xiàng),但不能沒有二次項(xiàng).如:y=-x2,y=2x2-
2025-01-19 08:56
【摘要】中考復(fù)習(xí)二次函數(shù)第26章復(fù)習(xí)1┃知識歸納┃一般地,形如(a,b,c是常數(shù),)的函數(shù),叫做二次函數(shù).[注意](1)等號右邊必須是整式;(2)自變量的最高次數(shù)是2;(3)當(dāng)b=0,c=0時(shí),y=
2025-07-29 00:42
【摘要】二次函數(shù)一、選擇題:1.拋物線的對稱軸是()A.直線 B.直線 C.直線 D.直線2.二次函數(shù)的圖象如右圖,則點(diǎn)在()A.第一象限 B.第二象限C.第三象限 D.第四象限3.已知二次函數(shù),且,,則一定有()A. B. C. D.≤04.把拋物線向右平移3個(gè)單位,再向下
2025-06-29 08:35
【摘要】一、選擇題:1.拋物線的對稱軸是()A.直線 B.直線 C.直線 D.直線2.二次函數(shù)的圖象如右圖,則點(diǎn)在()A.第一象限 B.第二象限C.第三象限 D.第四象限3.已知二次函數(shù),且,,則一定有()A. B. C. D.≤04.把拋物線向右平移3個(gè)單位,再向下平移2個(gè)單位
2025-06-29 08:33
【摘要】教育學(xué)科教師講義講義編號:副校長/組長簽字:
2025-05-19 02:10
【摘要】二次函數(shù)復(fù)習(xí)課挑戰(zhàn)自我自我構(gòu)建基礎(chǔ)演練思維激活聚焦中考靈活運(yùn)用基礎(chǔ)知識之自我構(gòu)建請思考函數(shù)y=x2-4x+3,并寫出相關(guān)結(jié)論。同學(xué)們比一比,賽一賽,看誰寫得多.1.請寫出一個(gè)二次函數(shù)解析式,使其圖像的對稱軸為x=1,并且開口向下。
2025-08-04 12:31
【摘要】二次函數(shù)的實(shí)際應(yīng)用陡門鄉(xiāng)第二初級中學(xué)林惠注意:當(dāng)二次函數(shù)表示某個(gè)實(shí)際問題時(shí),還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實(shí)數(shù)(3)開口方向:當(dāng)a>0時(shí),拋物線開口向上;當(dāng)a<0時(shí),拋物線開口向下。
2024-11-25 23:05
【摘要】第二十五講二次函數(shù)的圖象與性質(zhì)(二)理一理:、性質(zhì)以及它們的圖象,進(jìn)行形與數(shù)、形與方程、形與不等式之間的相互轉(zhuǎn)換,是分析與解決函數(shù)問題的重要方法.△=0時(shí),拋物線y=ax2+bx+c(a≠0)與x軸有個(gè)交點(diǎn),一元二次方程ax2+bx+c=0有實(shí)根;當(dāng)△<0時(shí),拋物線y=ax2+bx+c(a≠0)與
2024-11-23 12:03
【摘要】二次函數(shù)復(fù)習(xí)注意:當(dāng)二次函數(shù)表示某個(gè)實(shí)際問題時(shí),還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實(shí)數(shù):(1)二次函數(shù)的一般形式:函數(shù)y=ax2+bx+c(a≠0)注意:它的特殊形式:當(dāng)b=0,c
【摘要】二次函數(shù)一、中考導(dǎo)航圖;;頂點(diǎn)式:y=a(x-h)2+k(a≠0)待定系數(shù)法確定函數(shù)解析式一般式:y=ax2+bx+c(a≠0)兩根式:y=a(x-x1)(x-x2)(a≠0)。=ax2+bx+c的圖象與a、b、c之間的關(guān)系。
2025-06-30 13:36
2025-06-29 08:32
2024-11-10 21:11
【摘要】,在直角梯形ABCD中,AD∥BC,∠A=90o,AB=AD,DE⊥CD交AB于E,DF平分∠CDE交BC于F,連接EF.證明:CF=EFAEBFCD解:過D作DG⊥BC于G.由已知可得四邊形ABGD為正方形,∵DE⊥DC∴∠
2024-08-16 03:34