【摘要】2直角三角形第1課時【基礎(chǔ)梳理】一、直角三角形的性質(zhì):直角三角形的兩個銳角_____.:直角三角形兩條直角邊的_______等于斜邊的_____.互余平方和平方二、直角三角形的判定:有兩個角_____的三角形是直角三角形.:(1)文字?jǐn)⑹?如果三角形兩邊的_____
2025-06-17 07:56
2025-06-17 06:54
【摘要】2直角三角形第2課時【基礎(chǔ)梳理】斜邊、直角邊定理:_____和一條_______分別相等的兩個_____三角形全等,簡稱“斜邊、直角邊”定理,記作“___”.斜邊直角邊直角HL:如圖,在Rt△ABC和Rt△DEF中,∵AB=DE(或AC=DF),BC=EF,∴____
2025-06-24 02:29
【摘要】第1課時2直角三角形.,會識別兩個互逆命題,知道原命題成立,其逆命題不一定成立的道理.結(jié)論的過程,初步建立符號概念,提高抽象思維能力.如圖,在高為2米,坡角為30°的樓梯表面鋪地毯,地毯長度為多少米?30°2米分析:地毯長度即直角三角形的兩直角邊的和.??22
2025-06-19 15:27
2025-06-19 16:41
【摘要】第2課時2直角三角形“HL”判定定理.“HL”判定定理解決簡單的實際問題.、理解問題,體驗解決問題的多樣性,提高實踐能力和創(chuàng)新能力.?等嗎?SSS、SAS、ASA、AAS兩邊及其中一邊的對角對應(yīng)相等的兩個三角形不一定全等.試一試,你能舉出反例嗎?【規(guī)律方法】舉反例判定假命題是一
2025-06-16 05:55
【摘要】4解直角三角形,會運用勾股定理,直角三角形的兩個銳角互余及銳角三角函數(shù)解直角三角形.,培養(yǎng)學(xué)生良好的學(xué)習(xí)習(xí)慣.ACBcba(1)三邊之間的關(guān)系:a2+b2=_____.(2)銳角之間的關(guān)系:∠A+∠B=_____.(3)邊角之間的關(guān)系:sinA=____,cosA=____,tanA=____.
2025-06-18 02:55
【摘要】4解直角三角形【基礎(chǔ)梳理】由直角三角形中已知的元素,求出_________元素的過程,叫做解直角三角形.所有未知直角三角形中一共有__個元素,_____是已知元素,再知道_______和___________,就可以求出其他的元素.6直角一條邊第三個元素【自我診斷
2025-06-21 03:36
【摘要】解直角三角形導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)第一章直角三角形的邊角關(guān)系九年級數(shù)學(xué)下(BS)教學(xué)課件;(重點).(重點、難點)學(xué)習(xí)目標(biāo)ACBcba(1)三邊之間的關(guān)系:a2+b2=_____;(2)銳角之間的關(guān)系:∠A+∠
2025-06-18 12:03
2025-06-20 12:04
【摘要】第2課時1等腰三角形.“探索、猜想、證明”的過程,能夠用綜合法證明等腰三角形的有關(guān)性質(zhì)定理和判定定理..等腰三角形頂角的平分線、底邊上的中線、底邊上的高線互相重合.等腰三角形的兩個底角相等.簡稱:等邊對等角.頂角ABC底邊腰腰底角底角【定義】【
2025-06-15 08:04
【摘要】第一章三角形的證明1等腰三角形第1課時【基礎(chǔ)梳理】一、全等三角形的判定和性質(zhì)SSS,SAS,ASA和____._____,對應(yīng)角_____.AAS相等相等二、等腰三角形性質(zhì)定理及推論:等腰三角形的兩底角_____,簡述為:___________.:等腰三角形______
2025-06-24 02:27
【摘要】第1課時,1.1直角三角形的性質(zhì)和判定(Ⅰ),第1章直角三角形,第一頁,編輯于星期六:七點五十五分。,3.掌握利用添輔助線證明有關(guān)幾何問題的方法.,1.掌握“直角三角形的兩個銳角互余”定理.,2.掌握...
2024-10-22 04:01
【摘要】1.2直角三角形的性質(zhì)和判定(Ⅱ)第1課時,第一頁,編輯于星期六:七點五十六分。,1.掌握勾股定理,知道直角三角形三邊之間的關(guān)系.2.會運用勾股定理進(jìn)行有關(guān)計算.(重點、難點),第二頁,編輯于星期六:...
2024-10-22 04:02
【摘要】第2課時,1.1直角三角形的性質(zhì)和判定(Ⅰ),第一頁,編輯于星期六:七點五十五分。,4.從生活的實際問題出發(fā),引發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,從而培養(yǎng)學(xué)生發(fā)現(xiàn)問題和解決問題的能力.,1.掌握“直角三角形斜邊上...