【摘要】勾股定理的應(yīng)用(2)復(fù)習(xí)提問(wèn):1、勾股定理的內(nèi)容是什么?2、勾股定理的逆定理是什么?3、三角形的面積公式是什么?4、如何解決不規(guī)則圖形的問(wèn)題?我們利用圖形的割或補(bǔ)得方法來(lái)解決此類問(wèn)題。(2)畫出所有的以(1)中所畫線段為腰的等腰三角形.學(xué)習(xí)新知例2:如圖,已知CD=6m,
2025-06-15 01:47
2025-06-21 04:52
【摘要】勾股定理的應(yīng)用(1)知識(shí)回憶:cab勾股定理及其數(shù)學(xué)語(yǔ)言表達(dá)式:直角三角形兩直角邊a、b的平方和等于斜邊c的平方.222cba??CABcab222cba??在△ABC中,∠C=90°.(1)若b=8,c=10,則a=
2025-06-21 04:57
【摘要】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-16 14:20
2025-06-20 04:01
2025-06-16 13:51
2025-06-20 23:29
【摘要】反證法乙:這不可能,5月4號(hào)上午還看見你和丙在長(zhǎng)安街逛街呢!甲:在五一長(zhǎng)假里,我和爸爸、媽媽去新加坡玩了整整6天,真是太高興了.丙:是啊,5月4號(hào)我確實(shí)和甲在長(zhǎng)安街逛街!假設(shè)甲去新加坡玩了6天,乙:甲沒(méi)有去新加坡玩了6天.那么甲從5月1號(hào)至6號(hào)或是2號(hào)至7號(hào)在新加坡,即5月4號(hào)甲
2025-06-21 04:56
【摘要】在同一平面內(nèi),兩點(diǎn)之間,線段最短創(chuàng)設(shè)情境明確目標(biāo)從行政樓A點(diǎn)走到教學(xué)樓B點(diǎn)怎樣走最近?教學(xué)樓行政樓BA你能說(shuō)出這樣走的理由嗎?在同一平面內(nèi),如圖螞蟻在圓柱體的A點(diǎn)沿側(cè)面爬行到B點(diǎn),怎樣爬路程最短?創(chuàng)設(shè)情境明確目標(biāo)BA
2025-06-15 12:08
【摘要】第14章勾股定理勾股定理的應(yīng)用2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?HS立體圖形上的最短距離:將立體圖形側(cè)面展開,確定兩點(diǎn)在展開圖上的位置,連成,的長(zhǎng)度就是立體圖形上的兩點(diǎn)間的最短距離.自我診斷1.如圖,長(zhǎng)方體的高為3cm,底面是正方形,邊長(zhǎng)為2cm,現(xiàn)在一蟲子從點(diǎn)A出發(fā),沿長(zhǎng)方體表面到
2025-06-16 14:08
2025-06-18 06:55
2025-06-22 01:24
【摘要】第14章勾股定理14.2勾股定理的應(yīng)用第2課時(shí)勾股定理在數(shù)學(xué)中的應(yīng)用目標(biāo)突破總結(jié)反思第14章勾股定理知識(shí)目標(biāo)勾股定理的應(yīng)用知識(shí)目標(biāo)1.在理解勾股定理及其逆定理的基礎(chǔ)上,經(jīng)過(guò)觀察、分析、探究,能畫出長(zhǎng)為無(wú)理數(shù)的線段.2.通過(guò)分析圖形、思考、討論,能夠?qū)⑴c直角三角形有關(guān)的數(shù)學(xué)問(wèn)題
2025-06-21 00:16