freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

[高考數(shù)學(xué)]高中數(shù)學(xué)知識點(diǎn)總結(jié)和大學(xué)所有數(shù)學(xué)公式(參考版)

2025-06-02 23:33本頁面
  

【正文】 則為正方形.3. 球:⑴球的截面是一個(gè)圓面.①球的表面積公式:.②球的體積公式:.⑵緯度、經(jīng)度:①緯度:地球上一點(diǎn)的緯度是指經(jīng)過點(diǎn)的球半徑與赤道面所成的角的度數(shù).②經(jīng)度:地球上兩點(diǎn)的經(jīng)度差,是指分別經(jīng)過這兩點(diǎn)的經(jīng)線與地軸所確定的二個(gè)半平面的二面角的度數(shù),特別地,當(dāng)經(jīng)過點(diǎn)的經(jīng)線是本初子午線時(shí),這個(gè)二面角的度數(shù)就是點(diǎn)的經(jīng)度.附:①圓柱體積:(為半徑,為高)②圓錐體積:(為半徑,為高)③錐形體積:(為底面積,為高) 4. ①內(nèi)切球:當(dāng)四面體為正四面體時(shí),設(shè)邊長為a,得.注:球內(nèi)切于四面體:②外接球:球外接于正四面體,可如圖建立關(guān)系式.六. 空間向量.1. (1)共線向量:共線向量亦稱平行向量,指空間向量的有向線段所在直線互相平行或重合.注:①若與共線,與共線,則與共線.() [當(dāng)時(shí),不成立]②向量共面即它們所在直線共面.() [可能異面]③若∥,則存在小任一實(shí)數(shù),使.()[與不成立]④若為非零向量,則.(√)[這里用到之積仍為向量](2)共線向量定理:對空間任意兩個(gè)向量, ∥的充要條件是存在實(shí)數(shù)(具有唯一性),使.(3)共面向量:若向量使之平行于平面或在內(nèi),則與的關(guān)系是平行,記作∥.(4)①共面向量定理:如果兩個(gè)向量不共線,則向量與向量共面的充要條件是存在實(shí)數(shù)對x、y使.②空間任一點(diǎn)O和不共線三點(diǎn)A、B、C,則是PABC四點(diǎn)共面的充要條件.(簡證:P、A、B、C四點(diǎn)共面)注:①②是證明四點(diǎn)共面的常用方法.2. 空間向量基本定理:如果三個(gè)向量不共面,那么對空間任一向量,存在一個(gè)唯一的有序?qū)崝?shù)組x、y、z,使.推論:設(shè)O、A、B、C是不共面的四點(diǎn),則對空間任一點(diǎn)P, 都存在唯一的有序?qū)崝?shù)組x、y、z使 (這里隱含x+y+z≠1).注:設(shè)四面體ABCD的三條棱,其中Q是△BCD的重心,則向量用即證.3. (1)空間向量的坐標(biāo):空間直角坐標(biāo)系的x軸是橫軸(對應(yīng)為橫坐標(biāo)),y軸是縱軸(對應(yīng)為縱軸),z軸是豎軸(對應(yīng)為豎坐標(biāo)).①令=(a1,a2,a3),,則 ∥ (用到常用的向量模與向量之間的轉(zhuǎn)化:)②空間兩點(diǎn)的距離公式:.(2)法向量:若向量所在直線垂直于平面,則稱這個(gè)向量垂直于平面,記作,如果那么向量叫做平面的法向量. (3)用向量的常用方法:①利用法向量求點(diǎn)到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點(diǎn)B到平面的距離為.②利用法向量求二面角的平面角定理:設(shè)分別是二面角中平面的法向量,則所成的角就是所求二面角的平面角或其補(bǔ)角大?。ǚ较蛳嗤?,則為補(bǔ)角,反方,則為其夾角).③證直線和平面平行定理。167。(11)、體積公式.?dāng)?shù)學(xué)探索169。(10)了解棱錐的概念,掌握正棱錐的性質(zhì)。了解正多面體的概念.?dāng)?shù)學(xué)探索169。(7)掌握直線和直線、直線和平面、平面和平面所成的角、只要求會計(jì)算已給出公垂線或在坐標(biāo)表示下的距離掌握直線和平面垂直的性質(zhì)定理掌握兩個(gè)平面平行、垂直的判定定理和性質(zhì)定理.?dāng)?shù)學(xué)探索169。(5)掌握空間向量的數(shù)量積的定義及其性質(zhì):掌握用直角坐標(biāo)計(jì)算空間向量數(shù)量積的公式;掌握空間兩點(diǎn)間距離公式.?dāng)?shù)學(xué)探索169。(3)理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.?dāng)?shù)學(xué)探索169。會用斜二測的畫法畫水平放置的平面圖形的直觀圖:能夠畫出空間兩條直線、.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。.平行平面間的距離.二面角及其平面角.兩個(gè)平面垂直的判定和性質(zhì).?dāng)?shù)學(xué)探索169。.異面直線所成的角.異面直線的公垂線.異面直線的距離.?dāng)?shù)學(xué)探索169。.?dāng)?shù)學(xué)探索169。.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。(B).直線、平面、簡單幾何體(8)了解棱錐的概念,掌握正棱錐的性質(zhì),會畫正棱錐的直觀圖.?dāng)?shù)學(xué)探索169。(6)了解多面體、凸多面體的概念,了解正多面體的概念.?dāng)?shù)學(xué)探索169。(4)掌握兩個(gè)平面平行的判定定理和性質(zhì)定理,掌握二面角、二面角的平面角、兩個(gè)平行平面間的距離的概念,掌握兩個(gè)平面垂直的判定定理和性質(zhì)定理.?dāng)?shù)學(xué)探索169。(2)掌握兩條直線平行與垂直的判定定理和性質(zhì)定理,掌握兩條直線所成的角和距離的概念,對于異面直線的距離,只要求會計(jì)算已給出公垂線時(shí)的距離.?dāng)?shù)學(xué)探索169。(1)掌握平面的基本性質(zhì),會用斜二測的畫法畫水平放置的平面圖形的直觀圖。.正多面體.棱柱.棱錐.球.?dāng)?shù)學(xué)探索169。.直線和平面垂直的判定與性質(zhì).點(diǎn)到平面的距離.斜線在平面上的射影.直線和平面所成的角.三垂線定理及其逆定理.?dāng)?shù)學(xué)探索169。x焦半徑通徑2p焦參數(shù)P1. 橢圓、雙曲線、拋物線的標(biāo)準(zhǔn)方程的其他形式及相應(yīng)性質(zhì).2. 等軸雙曲線3. 共軛雙曲線5. 方程y2=ax與x2=ay的焦點(diǎn)坐標(biāo)及準(zhǔn)線方程..高中數(shù)學(xué)第九章立體幾何考試內(nèi)容平面及其基本性質(zhì).平面圖形直觀圖的畫法.?dāng)?shù)學(xué)探索169。0中心原點(diǎn)O(0,0)原點(diǎn)O(0,0)頂點(diǎn)(a,0), (─a,0), (0,b) , (0,─b)(a,0), (─a,0)(0,0)對稱軸x軸,y軸;長軸長2a,短軸長2bx軸,y軸。 a,y206。y163。x163。08. 圓錐曲線方程 知識要點(diǎn)一、橢圓方程.1. 橢圓方程的第一定義:⑴①橢圓的標(biāo)準(zhǔn)方程:i. 中心在原點(diǎn),焦點(diǎn)在x軸上:. ii. 中心在原點(diǎn),焦點(diǎn)在軸上:. ②一般方程:.③橢圓的標(biāo)準(zhǔn)參數(shù)方程:的參數(shù)方程為(一象限應(yīng)是屬于).⑵①頂點(diǎn):或.②軸:對稱軸:x軸,軸;長軸長,短軸長.③焦點(diǎn):或.④焦距:.⑤準(zhǔn)線:或.⑥離心率:.⑦焦點(diǎn)半徑:i. 設(shè)為橢圓上的一點(diǎn),為左、右焦點(diǎn),則由橢圓方程的第二定義可以推出.,為上、下焦點(diǎn),則由橢圓方程的第二定義可以推出.由橢圓第二定義可知:歸結(jié)起來為“左加右減”.注意:橢圓參數(shù)方程的推導(dǎo):得方程的軌跡為橢圓. ⑧通徑::和⑶共離心率的橢圓系的方程:橢圓的離心率是,方程是大于0的參數(shù),的離心率也是 我們稱此方程為共離心率的橢圓系方程.⑸若P是橢圓:,若,則的面積為(用余弦定理與可得). 若是雙曲線,則面積為.二、雙曲線方程.1. 雙曲線的第一定義:⑴①雙曲線標(biāo)準(zhǔn)方程:. 一般方程:.⑵①i. 焦點(diǎn)在x軸上: 頂點(diǎn): 焦點(diǎn): 準(zhǔn)線方程 漸近線方程:或ii. 焦點(diǎn)在軸上:頂點(diǎn):. 焦點(diǎn):. 準(zhǔn)線方程:. 漸近線方程:或,參數(shù)方程:或 .②軸為對稱軸,實(shí)軸長為2a, 虛軸長為2b,焦距2c. ③離心率. ④準(zhǔn)線距(兩準(zhǔn)線的距離);通徑. ⑤參數(shù)關(guān)系. ⑥焦點(diǎn)半徑公式:對于雙曲線方程(分別為雙曲線的左、右焦點(diǎn)或分別為雙曲線的上下焦點(diǎn)) “長加短減”原則: 構(gòu)成滿足 (與橢圓焦半徑不同,橢圓焦半徑要帶符號計(jì)算,而雙曲線不帶符號) ⑶等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.⑷共軛雙曲線:以已知雙曲線的虛軸為實(shí)軸,實(shí)軸為虛軸的雙曲線,它們具有共同的漸近線:.⑸共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時(shí),它的雙曲線方程可設(shè)為.例如:若雙曲線一條漸近線為且過,求雙曲線的方程?解:令雙曲線的方程為:,代入得.⑹直線與雙曲線的位置關(guān)系:區(qū)域①:無切線,2條與漸近線平行的直線,合計(jì)2條;區(qū)域②:即定點(diǎn)在雙曲線上,1條切線,2條與漸近線平行的直線,合計(jì)3條;區(qū)域③:2條切線,2條與漸近線平行的直線,合計(jì)4條;區(qū)域④:即定點(diǎn)在漸近線上且非原點(diǎn),1條切線,1條與漸近線平行的直線,合計(jì)2條;區(qū)域⑤:即過原點(diǎn),無切線,無與漸近線平行的直線.小結(jié):過定點(diǎn)作直線與雙曲線有且僅有一個(gè)交點(diǎn),可以作出的直線數(shù)目可能有0、4條.(2)若直線與雙曲線一支有交點(diǎn),交點(diǎn)為二個(gè)時(shí),求確定直線的斜率可用代入法與漸近線求交和兩根之和與兩根之積同號.⑺若P在雙曲線,則常用結(jié)論1:P到焦點(diǎn)的距離為m = n,則P到兩準(zhǔn)線的距離比為m︰n. 簡證: = .常用結(jié)論2:從雙曲線一個(gè)焦點(diǎn)到另一條漸近線的距離等于b.三、拋物線方程.3. 設(shè),拋物線的標(biāo)準(zhǔn)方程、類型及其幾何性質(zhì):圖形焦點(diǎn)準(zhǔn)線范圍對稱軸軸軸頂點(diǎn) (0,0)離心率焦點(diǎn)注:①頂點(diǎn).②則焦點(diǎn)半徑。(3)掌握拋物線的定義、標(biāo)準(zhǔn)方程和拋物線的簡單幾何性質(zhì).?dāng)?shù)學(xué)探索169。(1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡單幾何性質(zhì),了解橢圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。.拋物線的簡單幾何性質(zhì).?dāng)?shù)學(xué)探索169。.橢圓的簡單幾何性質(zhì).橢圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。 2)參數(shù)法。則稱方程f(x,y)=0為曲線C的方程,曲線C叫做方程f(x,y)=0的曲線?!埽?80176。若點(diǎn)P(x,y)分有向線段,其中P1(x1,y1),P2(x2,y2).則 特例,中點(diǎn)坐標(biāo)公式;重要結(jié)論,三角形重心坐標(biāo)公式。理解圓的參數(shù)方程.167。(5)了解解析幾何的基本思想,了解坐標(biāo)法.?dāng)?shù)學(xué)探索169。(3)了解二元一次不等式表示平面區(qū)域.?dāng)?shù)學(xué)探索169。(1)理解直線的傾斜角和斜率的概念,掌握過兩點(diǎn)的直線的斜率公式,掌握直線方程的點(diǎn)斜式、兩點(diǎn)式、一般式,并能根據(jù)條件熟練地求出直線方程.?dāng)?shù)學(xué)探索169。.圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。.簡單的線性規(guī)劃問題.?dāng)?shù)學(xué)探索169。直線方程的點(diǎn)斜式和兩點(diǎn)式.直線方程的一般式.?dāng)?shù)學(xué)探索169。167。(4)掌握簡單不等式的解法.?dāng)?shù)學(xué)探索169。(2)掌握兩個(gè)(不擴(kuò)展到三個(gè))正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單的應(yīng)用.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。sinB=1/2cbb=Ox1x2+y1y2=O.(4)線段的定比分點(diǎn)公式設(shè)點(diǎn)P分有向線段所成的比為λ,即=λ,則=+ (線段的定比分點(diǎn)的向量公式) (線段定比分點(diǎn)的坐標(biāo)公式)當(dāng)λ=1時(shí),得中點(diǎn)公式:=(+)或 (5)平移公式設(shè)點(diǎn)P(x,y)按向量a=(h,k)平移后得到點(diǎn)P′(x′,y′),則=+a或曲線y=f(x)按向量a=(h,k)平移后所得的曲線的函數(shù)解析式為:y-k=f(x-h)(6)正、余弦定理正弦定理:余弦定理:a2=b2+c2-2bccosA,b2=c2+a2-2cacosB,c2=a2+b2-2abcosC.(7)三角形面積計(jì)算公式:設(shè)△ABC的三邊為a,b,c,其高分別為ha,hb,hc,半周長為P,外接圓、內(nèi)切圓的半徑為R,r.①S△=1/2aha=1/2bhb=1/2chc ②S△=Pr ③S△=abc/4R④S△=1/2sinC0時(shí), 異向。(6)掌握平面兩點(diǎn)間的距離公式,以及線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并且能熟練運(yùn)用掌握平移公式.167。(4)了解平面向量的基本定理,理解平面向量的坐標(biāo)的概念,掌握平面向量的坐標(biāo)運(yùn)算.?dāng)?shù)學(xué)探索169。(2)掌握向量的加法和減法.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。反三角函數(shù):函數(shù)y=sinx,的反函數(shù)叫做反正弦函數(shù),記作y=arcsinx,它的定義域是[-1,1],值域是.函數(shù)y=cosx,(x∈[0,π])的反應(yīng)函數(shù)叫做反余弦函數(shù),記作y=arccosx,它的定義域是[-1,1],值域是[0,π].函數(shù)y=tanx,的反函數(shù)叫做反正切函數(shù),記作y=arctanx,它的定義域是(-∞,+∞),值域是.函數(shù)y=ctgx,[x∈(0,π)]的反函數(shù)叫做反余切函數(shù),記作y=arcctgx,它的定義域是(-∞,+∞),值域是(0,π).II. 競賽知識要點(diǎn)一、反三角函數(shù).1. 反三角函數(shù):⑴反正弦函數(shù)是奇函數(shù),故,(一定要注明定義域,若,沒有與一一對應(yīng),故無反函數(shù))注:,.⑵反余弦函數(shù)非奇非偶,但有,.注:①,.②是偶函數(shù),非奇非偶,而和為奇函數(shù).⑶反正切函數(shù):,定義域,值域(),是奇函數(shù),.注:,.⑷反余切函數(shù):,定義域,值域(),是非奇非偶.,.注:①,.②與互為奇函數(shù),同理為奇而與非奇非偶但滿足.⑵ 正弦、余弦、正切、余切函數(shù)的解集:的取值范圍 解集 的取值范圍 解集①的解集 ②的解集>1 >1 =1 =1 <1 <1 ③的解集: ③的解集:二、三角恒等式.組一組二組三 三角函數(shù)不等式<< 在上是減函數(shù)若,則高中數(shù)學(xué)第五章平面向量考試內(nèi)容:數(shù)學(xué)探索169。; 余弦線:OM。18ˊ. 1176?!?76。=57176。= 1176。)終邊相同的角的集合(角與角的終邊重合):②終邊在x軸上的角的集合: ③終邊在y軸上的角的集合:④終邊在坐標(biāo)軸上的角的集合: ⑤終邊在y=x軸上的角的集合: ⑥終邊在軸上的角的集合:⑦若角與角的終邊關(guān)于x軸對稱,則角與角的關(guān)系:⑧若角與角的終邊關(guān)于y軸對稱,則角與角的關(guān)系:⑨若角與角的終邊在一條直線上,則角與角的關(guān)系:⑩角與角的終邊互相垂直,則角與角的關(guān)系:2. 角度與弧度的互換關(guān)系:360176。04. 三角函數(shù) 知識要點(diǎn)1. ①與(0176。(7)掌握正弦定理、余弦定理,并能初步運(yùn)用它們解斜三角形.?dāng)?shù)學(xué)探索169。(5)理解正弦函數(shù)、余弦函數(shù)、正切函數(shù)的圖像和性質(zhì),會用“五點(diǎn)法”畫正弦函數(shù)
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1