【摘要】導數(shù)考試內容:導數(shù)的背影.導數(shù)的概念.多項式函數(shù)的導數(shù).利用導數(shù)研究函數(shù)的單調性和極值.函數(shù)的最大值和最小值.考試要求:(1)了解導數(shù)概念的某些實際背景.(2)理解導數(shù)的幾何意義.(3)掌握函數(shù),y=c(c為常數(shù))、y=xn(n∈N+)的導數(shù)公式,會求多項式函數(shù)的導數(shù).(4)理解極大值、極小值、最大值、最小值的概念,并會用導數(shù)求多項式函數(shù)的單調區(qū)間、極大值、極小值及閉區(qū)間上
2025-04-07 05:08
【摘要】導數(shù)考試內容:導數(shù)的背影.導數(shù)的概念.多項式函數(shù)的導數(shù).利用導數(shù)研究函數(shù)的單調性和極值.函數(shù)的最大值和最小值.考試要求:(1)了解導數(shù)概念的某些實際背景.(2)理解導數(shù)的幾何意義.(3)掌握函數(shù),y=c(c為常數(shù))、y=xn(n∈N+)的導數(shù)公式,會求多項式函數(shù)的導數(shù).(4)理解極大值、極小值、最大值、最小值的概念,并會用導數(shù)求多項式函數(shù)的單調區(qū)間、極大值、極小值及閉區(qū)間上的最
2024-08-19 19:51
【摘要】高中數(shù)學選修2----2知識點第一章導數(shù)及其應用一.導數(shù)概念的引入1.導數(shù)的物理意義:瞬時速率。一般的,函數(shù)在處的瞬時變化率是,我們稱它為函數(shù)在處的導數(shù),記作或,即=2.導數(shù)的幾何意義:,我們可以看出當點趨近于時,直線與曲線相切。容易知道,割線的斜率是,當點趨近于時,函數(shù)在處的導數(shù)就是切線PT的斜率k,即3.導函數(shù):當x變化時,便是x的一個函數(shù),我們
2024-08-16 19:28
【摘要】導數(shù)主要內容導數(shù)的背影.導數(shù)的概念.多項式函數(shù)的導數(shù).利用導數(shù)研究函數(shù)的單調性和極值.函數(shù)的最大值和最小值.考試要求:(1)了解導數(shù)概念的某些實際背景.(2)理解導數(shù)的幾何意義.(3)掌握函數(shù),y=c(c為常數(shù))、y=xn(n∈N+)的導數(shù)公式,會求多項式函數(shù)的導數(shù).(4)理解極大值、極小值、最大值、最小值的概念,并會用導數(shù)求多項式函數(shù)的單調區(qū)間、極大值、極小值及閉區(qū)間上的最大
【摘要】高中導數(shù)與函數(shù)知識點總結歸納一、基本概念1.導數(shù)的定義:設是函數(shù)定義域的一點,如果自變量在處有增量,則函數(shù)值也引起相應的增量;比值稱為函數(shù)在點到之間的平均變化率;如果極限存在,則稱函數(shù)在點處可導,并把這個極限叫做在處的導數(shù)。在點處的導數(shù)記作2導數(shù)的幾何意義:(求函數(shù)在某點處的切線方程)函數(shù)在點處的導數(shù)的幾何意義就是曲線在點處的切線的斜率,也就是說,曲線在點P處的切
【摘要】數(shù)學高一數(shù)學必修1知識網絡集合函數(shù)附:一、函數(shù)的定義域的常用求法:1、分式的分母不等于零;2、偶次方根的被開方數(shù)大于等于零;3、對數(shù)的真數(shù)大于零;4、指數(shù)函數(shù)和對數(shù)函數(shù)的底數(shù)大于零且不等于1;5、三角函數(shù)正切函數(shù)
2025-04-20 12:50
【摘要】高中數(shù)學必修4知識點總結第一章三角函數(shù)(初等函數(shù)二)2、角的頂點與原點重合,角的始邊與軸的非負半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標軸上的角的集合為3、與角終邊相同的角的集合為4、已知是第幾象限角,確定所在象
2024-08-02 23:58
【摘要】高中數(shù)學必修4知識點2、角的頂點與原點重合,角的始邊與軸的非負半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標軸上的角的集合為3、與角終邊相同的角的集合為4、已知是第幾象限角,確定所在象限的方法:先把各象限均分等份,再從軸的正半軸
2025-04-07 05:10
【摘要】高中數(shù)學必備(必須理解與記憶)知識點歸納必修一第一章集合與函數(shù)的概念一、集合:1.集合的定義與表示(1)集合的定義:把一些元素組成的總體叫做集合(2)集合的表示:常用大寫拉丁字母表示,集合中的元素一般用小寫拉丁字母表示(3)集合的性質:確定性、互異性、無序性(集合中元素的性質)(4)元素與集合的關系:屬于(),不屬于()(5)常用數(shù)集:(
2025-04-07 05:14
【摘要】Page1of30高中數(shù)學必修1知識點第一章集合與函數(shù)概念一、集合有關概念1、集合的含義:某些指定的對象集在一起就成為一個集合,其中每一個對象叫元素。2、集合的中元素的三個特性:;;說明:(1)對于一個給定的集合,集合中的元素是確定的,任何一個對象或者是或者不是這個給定的集合的元素。(2
2024-08-10 16:09
【摘要】高中數(shù)學重要知識點詳細歸納 高中數(shù)學重要知識點歸納 函數(shù)與導數(shù)。主要考查集合運算、函數(shù)的有關概念定義域、值域、解析式、函數(shù)的極限、連續(xù)、導數(shù)。 平面向量與三角函數(shù)、三角變換及其應...
2024-12-05 02:25
【摘要】高中數(shù)學必修五知識點歸納 高一年級數(shù)學必修五知識點整理 ?、殴顬閐的等差數(shù)列,各項同加一數(shù)所得數(shù)列仍是等差數(shù)列,其公差仍為d. ?、乒顬閐的等差數(shù)列,各項同乘以常數(shù)k所得數(shù)列仍是...
2024-12-05 02:43
【摘要】高中數(shù)學立體幾何知識點歸納總結一、立體幾何知識點歸納第一章空間幾何體(一)空間幾何體的結構特征(1)多面體——由若干個平面多邊形圍成的幾何體.圍成多面體的各個多邊形叫叫做多面體的面,相鄰兩個面的公共邊叫做多面體的棱,棱與棱的公共點叫做頂點。旋轉體——把一個平面圖形繞它所在平面內的一條定直線旋轉形成的封閉幾何體。其中,這條定直線稱為旋轉體的軸。
【摘要】圓錐曲線方程知識要點一、橢圓方程及其性質.1.橢圓的第一定義:橢圓的第二定義:,點P到定點F的距離,d為點P到直線l的距離其中F為橢圓焦點,l為橢圓準線①橢圓的標準方程:的參數(shù)方程為()(現(xiàn)在了解,后面選修4-4要詳細講).②通徑:垂直于對稱軸且過焦點的弦叫做通徑,橢圓通徑長為③設橢圓:上弦AB的中點為M(x0,y0),則斜率kAB=,對橢圓:,則kAB=.弦
2025-04-07 05:07
【摘要】高中數(shù)學必修+選修知識點歸納大全-18-引言:必修課程由5個模塊組成:必修1:集合、函數(shù)概念與基本初等函數(shù)(指、對、冪函數(shù))必修2:立體幾何初步、平面解析幾何初步。必修3:算法初步、統(tǒng)計、概率。必修4:基本初等函數(shù)(三角函數(shù))、平面向量、三角恒等變換。必修5:解三角形、數(shù)列、不等式。以上是每一個高中學生所必須學習的。上述內容覆蓋了高中階
2025-04-07 05:12