【摘要】哈爾濱工程大學(xué)高等數(shù)學(xué)定義若函數(shù)),(yxf在),(000yxP的某個(gè)去心鄰域內(nèi)恒有),(),(00yxfyxf?,則稱),(00yxf為此函數(shù)的一個(gè)極大值,),(000yxP
2025-01-22 08:48
【摘要】一、基本概念:具有某種特定性質(zhì)的事物的總體.組成這個(gè)集合的事物稱為該集合的元素.},,,{21naaaA??}{所具有的特征xxM?有限集無(wú)限集,Ma?,Ma?.,,的子集是就說(shuō)則必若BABxAx??.BA?記作數(shù)集分類:N自然數(shù)集Z整數(shù)集Q有理數(shù)集R實(shí)數(shù)集數(shù)集間的關(guān)系:
2025-01-23 00:54
【摘要】高等數(shù)學(xué)微積分公式大全一、基本導(dǎo)數(shù)公式⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂⒃⒄⒅二、導(dǎo)數(shù)的四則運(yùn)算法則三、高階導(dǎo)數(shù)的運(yùn)算法則(1)(2)(3)
2025-07-27 12:04
【摘要】高等數(shù)學(xué)微積分公式大全一、基本導(dǎo)數(shù)公式⑴(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)二、微分公式與微分運(yùn)算法則⑴⑵⑶⑷⑸⑹⑺⑻⑼
2024-09-03 21:55
【摘要】1引例:一塊長(zhǎng)方形的金屬板,四個(gè)頂點(diǎn)的坐標(biāo)是(1,1),(5,1),(1,3),(5,3).在坐標(biāo)原點(diǎn)處有一個(gè)火焰,它使金屬板受熱.假定板上任意一點(diǎn)處的溫度與該點(diǎn)到原點(diǎn)的距離成反比.在(3,2)處有一個(gè)螞蟻,問(wèn)這只螞蟻應(yīng)沿什么方向爬行才能最快到達(dá)較涼快的地點(diǎn)?問(wèn)題的實(shí)質(zhì):應(yīng)沿由熱變冷變化最驟烈的方向(即梯度方向)爬行.第七節(jié)方
2025-08-08 18:34
【摘要】高等數(shù)學(xué),微積分大補(bǔ)考復(fù)習(xí)題1.填空題1、若,則。無(wú)窮小2、函數(shù)的定義域?yàn)椤=23、有界函數(shù)與無(wú)窮小的乘積是。無(wú)窮小4、跳躍間斷點(diǎn)與可去間斷點(diǎn)統(tǒng)稱為:_______________。1類間斷點(diǎn)5、極限_______________。1/36、如果函數(shù)在區(qū)間上的導(dǎo)數(shù)恒為零,那么在區(qū)間上是
【摘要】第一章函數(shù)1、理解一元函數(shù)、反函數(shù)、復(fù)合函數(shù)的定義;2、了解函數(shù)的表示和函數(shù)的簡(jiǎn)單性態(tài)—有界性、單調(diào)性、奇偶性、周期性;3、熟悉基本初等函數(shù)與初等函數(shù)(包含其定義區(qū)間、簡(jiǎn)單性態(tài)和圖形);基本要求一、基本概念:具有某種特定性質(zhì)的事物的全體.
2025-08-08 18:47
【摘要】習(xí)題3-11、計(jì)算下列第二類曲線積分:(1)L為拋物線上由點(diǎn)(0,0)到點(diǎn)(2,4)的一段??;(2)L為按逆時(shí)針?lè)较蝠埿械膱A;(3)L為螺旋線上由t=0到t=2的有向弧段;(4)L為由點(diǎn)(1,1,1)到點(diǎn)(2,3,4)的一段直線;(5)其中L為由y=x,x=1及y=0所構(gòu)成的三角形閉路,取逆時(shí)針?lè)较颍唬?)其中,L按逆時(shí)針?lè)较蝠埿械膱A.解(1)化為對(duì)x的定積分
2025-07-27 12:01
【摘要】微積分基本定理(79)31、變速直線運(yùn)動(dòng)問(wèn)題變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過(guò)的路程.另一方面這段路程可表示為)()(12TsTs?原函數(shù)存在
2024-12-11 00:51
【摘要】第五節(jié)機(jī)動(dòng)目錄上頁(yè)下頁(yè)返回結(jié)束對(duì)坐標(biāo)的曲面積分一、基本概念觀察以下曲面的側(cè)(假設(shè)曲面是光滑的)曲面分上側(cè)和下側(cè)曲面分內(nèi)側(cè)和外側(cè)曲面法向量的指向決定曲面的側(cè).決定了側(cè)的曲面稱為有向曲面.曲面的投影問(wèn)題:面在xoyS?,在有向曲面Σ上取一小塊
2024-12-11 05:11
【摘要】1第五章2考試內(nèi)容常數(shù)項(xiàng)級(jí)數(shù)的收斂與發(fā)散的概念,收斂級(jí)數(shù)的和的概念,級(jí)數(shù)的基本性質(zhì)與收斂的必要條件,幾何級(jí)數(shù)與P級(jí)數(shù)及其收斂性,正項(xiàng)級(jí)數(shù)收斂性的判別法,任意項(xiàng)級(jí)數(shù)的絕對(duì)收斂與條件收斂,交錯(cuò)級(jí)數(shù)與萊布尼茨定理,冪級(jí)數(shù)及其收斂半徑、收斂區(qū)間(指開(kāi)區(qū)間)和收斂域,冪級(jí)數(shù)的和函數(shù),冪級(jí)數(shù)在其收斂區(qū)間內(nèi)的基本性質(zhì),簡(jiǎn)單冪級(jí)數(shù)和函數(shù)的求法,初等函數(shù)的冪
2025-02-22 00:22
【摘要】一、單項(xiàng)選擇題(1)函數(shù)??fx在0xx?處連續(xù)是??fx在0xx?處可微的()條件.(2)當(dāng)0x?時(shí),??21xe?是關(guān)于x的()(3)2x?是函數(shù)??
2025-01-11 22:17
【摘要】變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過(guò)的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問(wèn)題
2025-07-25 11:18
【摘要】第十章微分方程§1、微分方程的基本概念1微分方程的定義:含有未知函數(shù)的倒數(shù)(或微分)的方程,稱為微分方程。未知函數(shù)為一元函數(shù)的微分方程稱為常微分方程未知函數(shù)為多元函數(shù),從而出現(xiàn)偏導(dǎo)數(shù)的微分方程稱為偏微分方程如:(1)yay??(2)()()dypxy
【摘要】例解0)0()(lim)0(0?????xfxffx)100()2)(1(lim0?????xxxx?!100?利用導(dǎo)數(shù)定義求函數(shù)在某點(diǎn)處的導(dǎo)數(shù)1.某些簡(jiǎn)單函數(shù)在某點(diǎn)處的導(dǎo)數(shù)用導(dǎo)數(shù)定義求有時(shí)很方便例解0)0()(lim)0(0?????xfxffxx
2024-10-19 21:13