【摘要】·新課標(biāo)第17講│二次函數(shù)的應(yīng)用第17講二次函數(shù)的應(yīng)用·新課標(biāo)第17講│考點(diǎn)隨堂練│考點(diǎn)隨堂練│考點(diǎn)1二次函數(shù)與一次函數(shù)、反比例函數(shù)的綜合·新課標(biāo)第17講│考點(diǎn)隨堂練1.[2011·無錫]如圖17-1,拋物線y=
2025-01-15 22:28
【摘要】二次函數(shù)的應(yīng)用解決形狀是拋物線的實(shí)際問題學(xué)以致用復(fù)習(xí)?求函數(shù)的解析式?1)(2020云南中考試題)已知在同意個(gè)直角坐標(biāo)系中,反比例函數(shù)y=5/X與二次函數(shù)y=-x2+2x+c的圖像交于點(diǎn)A(-1,m)?(1)求m,c的值(2)求二次函數(shù)的對稱軸和頂點(diǎn)坐標(biāo)。復(fù)習(xí)解析式的求法?已知二次函數(shù)的頂點(diǎn)是(
2024-11-23 07:59
【摘要】·新課標(biāo)第15講│二次函數(shù)的圖象及其性質(zhì)第15講二次函數(shù)的圖象及其性質(zhì)·新課標(biāo)第15講│考點(diǎn)隨堂練│考點(diǎn)隨堂練│考點(diǎn)1二次函數(shù)的定義≠0·新課標(biāo)第15講│考點(diǎn)隨堂練1.若二次函數(shù)y=x2+2x-7的函數(shù)值為8
【摘要】第14講二次函數(shù)的應(yīng)用考點(diǎn)1二次函數(shù)與一次函數(shù)、反比例函數(shù)的綜合第一環(huán)節(jié):知識回顧第14講┃二次函數(shù)的應(yīng)用圖象類問題利用函數(shù)的特征進(jìn)行函數(shù)圖象的判斷有關(guān)交點(diǎn)類問題①求交點(diǎn)坐標(biāo);②判斷交點(diǎn)情況;③判斷圖象的大概位置函數(shù)值大小比較給定區(qū)域內(nèi)的函數(shù)值的大小性質(zhì)的綜合應(yīng)用
2025-06-15 15:11
【摘要】復(fù)習(xí)十二二次函數(shù)應(yīng)用(二)復(fù)習(xí)目標(biāo):通過復(fù)習(xí)進(jìn)一步理解并掌握二次函數(shù)有關(guān)性質(zhì),提高對二次函數(shù)綜合題的分析和解答的能力.,鉛球飛行時(shí)的高度y(m)與水平距離x(m)之間的函數(shù)關(guān)系式是y=-x2+x+,則鉛球落地的水平距離為m.115321308米
2024-11-23 12:03
【摘要】二次函數(shù)應(yīng)用(一)復(fù)習(xí)十一復(fù)習(xí)目標(biāo):通過復(fù)習(xí)進(jìn)一步理解并掌握二次函數(shù)有關(guān)性質(zhì),提高對二次函數(shù)綜合題的分析和解答的能力.y=x2-2kx+k-1.⑴求證:不論k取何值時(shí),拋物線與x軸必有兩個(gè)交點(diǎn).⑵設(shè)拋物線與x軸的兩個(gè)交點(diǎn)分別為(x1,0),(x2,0),求x12+x22的最小值.x2-(2k-
【摘要】九年級數(shù)學(xué)(下)第二章二次函數(shù)6.何時(shí)獲得最大利潤(1)二次函數(shù)的應(yīng)用陽泉市義井中學(xué)高鐵牛?請你幫助分析:銷售單價(jià)是多少時(shí),可以獲利最多?何時(shí)獲得最大利潤?某商店經(jīng)營T恤衫,已知成批購進(jìn)時(shí)單價(jià)是.根據(jù)市場調(diào)查,銷售量與銷售單價(jià)滿足如下關(guān)系:在某一時(shí)間內(nèi),單價(jià)是,銷售量是500件,而單價(jià)每降低1
2024-11-10 18:08
【摘要】·新課標(biāo)第16講│二次函數(shù)與一元二次方程第16講二次函數(shù)與一元二次方程·新課標(biāo)第16講│考點(diǎn)隨堂練│考點(diǎn)隨堂練│考點(diǎn)1二次函數(shù)與一元二次方程的關(guān)系二次函數(shù)y=ax2+bx+c與x軸交點(diǎn)交點(diǎn)橫坐標(biāo)是一元二次方程ax2+bx+c
【摘要】
2025-06-24 06:40
【摘要】二次函數(shù)的實(shí)際應(yīng)用陡門鄉(xiāng)第二初級中學(xué)林惠注意:當(dāng)二次函數(shù)表示某個(gè)實(shí)際問題時(shí),還必須根據(jù)題意確定自變量的取值范圍.:形如y=ax2+bx+c(a,b,c是常數(shù),a≠0)的函數(shù)叫做二次函數(shù)自變量x的取值范圍是:任意實(shí)數(shù)(3)開口方向:當(dāng)a>0時(shí),拋物線開口向上;當(dāng)a<0時(shí),拋物線開口向下。
2024-11-25 23:05
【摘要】中考總復(fù)習(xí)第一輪9/14/2022第16講 二次函數(shù)一、【知識要點(diǎn)】:一般地,如果是常數(shù),,那么叫做的二次函數(shù).(1)拋物線的頂點(diǎn)是坐標(biāo)原點(diǎn),對稱軸是軸.(2)函數(shù)的圖像與的符號關(guān)系.①當(dāng)時(shí)拋物線開口向上頂點(diǎn)為其最
2024-08-28 00:10
【摘要】第二十五講二次函數(shù)的圖象與性質(zhì)(二)理一理:、性質(zhì)以及它們的圖象,進(jìn)行形與數(shù)、形與方程、形與不等式之間的相互轉(zhuǎn)換,是分析與解決函數(shù)問題的重要方法.△=0時(shí),拋物線y=ax2+bx+c(a≠0)與x軸有個(gè)交點(diǎn),一元二次方程ax2+bx+c=0有實(shí)根;當(dāng)△<0時(shí),拋物線y=ax2+bx+c(a≠0)與
2025-06-19 18:09
【摘要】二次函數(shù)的應(yīng)用中考復(fù)習(xí)專題浠水縣麻橋中學(xué)王穎靈練習(xí)2、已知:用長為12cm的鐵絲圍成一個(gè)矩形,一邊長為xcm.,面積為ycm2,問何時(shí)矩形的面積最大?解:∵周長為12cm,一邊長為xcm,∴另一邊為(6-x)cm解:由韋達(dá)定理得:x1+x2=2k,x1?x2=2k-1
2024-11-11 02:16