【摘要】iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?ni,,3,2??Newton插值法§
2025-05-18 09:20
【摘要】上頁(yè)下頁(yè)在工程技術(shù)與科學(xué)研究中,常會(huì)遇到函數(shù)表達(dá)式過(guò)于復(fù)雜而不便于計(jì)算,且又需要計(jì)算眾多點(diǎn)處的函數(shù)值;或已知由實(shí)驗(yàn)(測(cè)量)得到的某一函數(shù)y=f(x)在區(qū)間[a,b]中互異的n+1個(gè)xi(i=0,1,...,n)處的值yi=f(xi)(i=0,1,...,n),需要構(gòu)造一個(gè)簡(jiǎn)單易算的函數(shù)P(x)作為y=f(x)的近似表
2025-05-02 02:53
【摘要】理學(xué)院AnhuiUniversityofScienceandTechnologyDEPARTMENTOFMATHEMATICSPHYSICS2.?#?數(shù)值分析第二章插值法李慶揚(yáng)王能超易大義編§8三次樣條插值§2Lagrange插值§1引言
2024-12-11 09:42
【摘要】數(shù)值分析第二章插值法均差與牛頓插值公式Lagrange插值多項(xiàng)式的缺點(diǎn))(xlj??????njiiijixxxx0)()(nj,,2,1,0??我們知道,Lagrange插值多項(xiàng)式的插值基函數(shù)為理論分析中很方便,但是當(dāng)插值節(jié)點(diǎn)增減時(shí)全部插值基函數(shù)就要隨之變化,整個(gè)公式也
2025-01-18 02:30
【摘要】拉格朗日插值法問(wèn)題的提出????01(),,,,,(),(0,1,,)()niyfxababxxxyfxinfx???在實(shí)際問(wèn)題中常遇到這樣的函數(shù),其在某個(gè)區(qū)間上是存在的。但是,通過(guò)觀察或測(cè)量或?qū)嶒?yàn)只能得到在區(qū)間上有限個(gè)離散點(diǎn)上
2025-05-13 02:07
2025-05-04 12:05
【摘要】第2章插值法在科學(xué)研究與工程技術(shù)中,常常遇到這樣的問(wèn)題:由實(shí)驗(yàn)或測(cè)量得到一批離散樣點(diǎn),要求作出一條通過(guò)這些點(diǎn)的光滑曲線,以便滿足設(shè)計(jì)要求或進(jìn)行加工。反映在數(shù)學(xué)上,即已知函數(shù)在一些點(diǎn)上的值,尋求它的分析表達(dá)式。此外,一些函數(shù)雖有表達(dá)式,但因式子復(fù)雜,不易計(jì)算其值和進(jìn)行理論分析,也需要構(gòu)造一個(gè)簡(jiǎn)單函數(shù)來(lái)近似它。解決這種問(wèn)題的方法有兩類(lèi):一類(lèi)是給出函數(shù)的一些樣點(diǎn),選定一個(gè)便于計(jì)算的函數(shù)形
2024-09-03 01:58
【摘要】§引言問(wèn)題的提出–函數(shù)解析式未知,通過(guò)實(shí)驗(yàn)觀測(cè)得到的一組數(shù)據(jù),即在某個(gè)區(qū)間[a,b]上給出一系列點(diǎn)的函數(shù)值yi=f(xi)–或者給出函數(shù)表y=f(x)y=p(x)xx0x1x2……xnyy0y1y2……yn第六章插值法插值法的基本原理設(shè)函數(shù)y=f(x)定義在區(qū)
2025-05-02 08:22
【摘要】牛頓插值法的分析與應(yīng)用學(xué)生姓名:班級(jí):學(xué)號(hào):
2025-06-30 07:09
【摘要】數(shù)值分析代數(shù)插值法的論述姓名:藺孝寶學(xué)號(hào):12023316班級(jí):1203學(xué)院:商洛學(xué)院數(shù)計(jì)學(xué)院數(shù)學(xué)與計(jì)算科學(xué)系日期商洛學(xué)院-1-代數(shù)插值法1.摘要插值法是函數(shù)逼近的重要方法之一,有著廣泛的應(yīng)用。在生產(chǎn)和實(shí)驗(yàn)中,函數(shù)f(x
2025-06-10 00:46
【摘要】05:202021/6/171/37§3插值法與曲線擬合實(shí)驗(yàn)數(shù)據(jù)統(tǒng)計(jì)處理插值法(Lagrange插值法)曲線擬合(最小二乘法)平行試驗(yàn)數(shù)據(jù)處理,誤差分析。根據(jù)實(shí)驗(yàn)測(cè)定的離散數(shù)據(jù),求未測(cè)的某點(diǎn)數(shù)據(jù)。根據(jù)實(shí)驗(yàn)測(cè)定的離散數(shù)據(jù),擬合曲線,分析數(shù)據(jù)規(guī)律,求函數(shù)表達(dá)式。
2025-05-19 03:12
【摘要】2021/6/161第二章插值法均差與牛頓插值公式§2021/6/162均差及其性質(zhì)§)(xlj??????njiiijixxxx0)()(nj,,2,1,0??我們知道,拉格朗日插值多項(xiàng)式的插值基函數(shù)為形式上太復(fù)雜,計(jì)算量很大,并且重復(fù)計(jì)
2025-05-17 04:10
【摘要】iiijjijiilxlbx?????11?????????????nnnnnnaaaaaaaaaA???????212222111211bAx?ni,,3,2??第3章插值法iiij
2025-05-17 09:59
【摘要】數(shù)值計(jì)算方法課程設(shè)計(jì)報(bào)告課程設(shè)計(jì)名稱:數(shù)值計(jì)算方法課程設(shè)計(jì)題目:插值算法年級(jí)專業(yè):信計(jì)1302班組員姓名學(xué)號(hào):高育坤1309064043王冬妮1309064044
2025-08-08 06:42
【摘要】第五章函數(shù)近似計(jì)算的插值法Hermite插值法§Hermite插值法§Lagrange插值雖然構(gòu)造比較簡(jiǎn)單,但插值曲線只是在節(jié)點(diǎn)處與原函數(shù)較吻合,若還要求在節(jié)點(diǎn)處兩者相切,即倒數(shù)值相等,使之與被插函數(shù)的”密切”程度更好,這就要用到帶導(dǎo)數(shù)的插值.0101(),,,,,
2025-08-06 20:29