freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

中考數(shù)學(xué)專題復(fù)習(xí)平行四邊形的綜合題含答案(參考版)

2025-04-01 22:12本頁(yè)面
  

【正文】 AB=CD,AD∥BC.∵四邊形AECF是矩形,∴AE∥CF.∴四邊形AMCN是平行四邊形.∴AM=CN.在Rt△ABM和Rt△CDN中,AB=CD,AM=CN,∴Rt△ABM≌Rt△CDN.(2)當(dāng)AB=AF時(shí),四邊形AMCN是菱形.∵四邊形ABCD、AECF是矩形,∴∠B=∠BAD=∠EAF=∠F=90176。利用HL即可證明;(2)若四邊形AMCN為菱形,則有AM=AN,從已知可得∠BAM=∠FAN,又∠B=∠F=90176。 ∴AD⊥BQ;(2)、小慧思考問題的方式中,蘊(yùn)含的數(shù)學(xué)思想是:分類討論思想;拓展延伸:四邊形MNPT是正方形,理由:∵取AB、BD、DQ、AQ的中點(diǎn)M、N、P、T, ∴MNAD,TPAD, ∴MNTP,∴四邊形MNPT是平行四邊形, ∵NPBQ,BQ=AD, ∴NP=MN, ∴平行四邊形MNPT是菱形,又∵AD⊥BQ,NP∥BQ,MN∥AD, ∴∠MNP=90176。即可得出答案.試題解析:(1)、成立,理由:如圖乙:由題意可得:∠FDE=∠QDC=∠ABC=∠BAC=45176。.∴AE⊥DF;(4)如圖:由于點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90176。.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可證AE=DF,∠DAE=∠CDF延長(zhǎng)FD交AE于點(diǎn)G,則∠CDF+∠ADG=90176。.在△ADE和△DCF中,∴△ADE≌△DCF(SAS).∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90176。所以AE⊥DF;(3)成立.由(1)同理可證AE=DF,∠DAE=∠CDF,延長(zhǎng)FD交AE于點(diǎn)G,再由等角的余角相等可得AE⊥DF;(4)由于點(diǎn)P在運(yùn)動(dòng)中保持∠APD=90176。DE=CF,所以△ADE≌△DCF,于是AE=DF,∠DAE=∠CDF,因?yàn)椤螩DF+∠ADF=90176。至△ADG,可使AB與AD重合,證出△AFE≌△AFG,根據(jù)全等三角形的性質(zhì)得出EF=FG,即可得出答案;(3)把△ACE旋轉(zhuǎn)到ABF的位置,連接DF,證明△AFE≌△AFG(SAS),則EF=FG,∠C=∠ABF=45176?!敬鸢浮浚?)詳見解析;(2)詳見解析;(3)詳見解析.【解析】試題分析:(1)把△ABE繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90176。,AB=AC,點(diǎn)D、E均在邊BC上,且∠DAE=45176。F分別在邊BC、CD上,∠EAF=45176。連接EF、則EF=BE+DF,試說明理由;(2)類比引申如圖2,在四邊形ABCD中,AB=AD,∠BAD=90176?!唷螩DE=∠CEG,∴∠BCF=∠CEG,∴CF∥EG,∴四邊形CEGF平行四邊形,∴FG∥CE,F(xiàn)G=CE.11.在中,BD為AC邊上的中線,過點(diǎn)C作于點(diǎn)E,過點(diǎn)A作BD的平行線,交CE的延長(zhǎng)線于點(diǎn)F,在AF的延長(zhǎng)線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,求四邊形BDFG的周長(zhǎng).【答案】(1)證明見解析(2)證明見解析(3)8【解析】【分析】利用平行線的性質(zhì)得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結(jié)論即可得證,設(shè),則,利用菱形的性質(zhì)和勾股定理得到CF、AF和AC之間的關(guān)系,解出x即可.【詳解】證明:,又為AC的中點(diǎn),又,證明:,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設(shè),則,在中,解得:,舍去,菱形BDFG的周長(zhǎng)為8.【點(diǎn)睛】本題考查了菱形的判定與性質(zhì)直角三角形斜邊上的中線,勾股定理等知識(shí),正確掌握這些定義性質(zhì)及判定并結(jié)合圖形作答是解決本題的關(guān)鍵.12.(1)問題發(fā)現(xiàn)如圖1,點(diǎn)E..在△CBF與△DCE中,∵BF=CE,∠FBC=∠ECD,BC=DC,∴△CBF≌△DCE(SAS),∴∠BCF=∠CDE,CF=DE.∵EG=DE,∴CF=EG.∵DE⊥EG,∴∠DEC+∠CEG=90176。.∵∠GEH+∠HGE=90176。PC中,BP=2t4,CP=BCBP=18(2t4)=222t,由勾股定理得:AP2=82+(2t4)2,A39。C=CDDA39。中,DQ=ADAQ=8,由勾股定理得:DA39。P=AP,A39。落在CD邊上時(shí),連接AP、A39。PQ,∴∠APQ=∠AQP,∴AP=AQ=A39。=∠A39。如圖3所示:由折疊的性質(zhì)得:A39。=AP=8(42t)=4+2t,由勾股定理得:42+(42t)2=(4+2t)2,解得:t=;②當(dāng)點(diǎn)P在BC邊上,A39。F=4,在Rt△A39。F==6,∴A39。Q=∠A=90176。=PA,A39。落在BC邊上時(shí),作QF⊥BC于F,如圖2所示:則QF=AB=8,BF=AQ=10,∵四邊形ABCD是矩形,∴∠A=∠B=∠BCD=∠D=90176。N=MNO39。M是△APQ的中位線,∴O39。為PQ的中點(diǎn), ∴O39。交AD于M,如圖1所示:則MN=AB=8,O39。作O39。PC中,BP=2t4,CP=BCBP=222t,由勾股定理得出方程,解方程即可.【詳解】(1)∵點(diǎn)P從AB邊的中點(diǎn)E出發(fā),速度為每秒2個(gè)單位長(zhǎng)度,∴AB=2BE,由圖象得:t=2時(shí),BE=22=4,∴AB=2BE=8,AE=BE=4,t=11時(shí),2t=22,∴BC=224=18,當(dāng)t=0時(shí),點(diǎn)P在E處,m=△AEQ的面積=AQAE=104=20;故答案為8,18,20;(2)當(dāng)t=1秒時(shí),以PQ為直徑的圓不與BC邊相切,理由如下: 當(dāng)t=1時(shí),PE=2,∴AP=AE+PE=4+2=6,∵四邊形ABCD是矩形,∴∠A=90176。C=CDDA39。中,DQ=ADAQ=8,由勾股定理求出DA39。P=AP,A39。P=10,在Rt△ABP中,由勾股定理求出BP=6,由BP=2t4,得出2t4=6,解方程即可;③當(dāng)點(diǎn)P在BC邊上,A39。落在BC邊上時(shí),由折疊的性質(zhì)得:A39。BP中,BP=42t,PA39。B=BFA39。由勾股定理求出A39。Q=AQ=10,∠PA39。落在BC邊上時(shí),作QF⊥BC于F,則QF=AB=8,BF=AQ=10,由折疊的性質(zhì)得:PA39。M=5<圓O39。M=AP=3,求出O39。交AD于M,則MN=AB=8,O39。作O39。.【點(diǎn)睛】本題主要考查了正方形的性質(zhì)、全等三角形的判定與性質(zhì)、銳角三角函數(shù)、旋轉(zhuǎn)變換的性質(zhì)的綜合運(yùn)用,有一定的綜合性,分類討論當(dāng)△AON是等腰三角形時(shí),求α的度數(shù)是本題的難點(diǎn).9.如圖①,在矩形中,點(diǎn)從邊的中點(diǎn)出發(fā),沿著速運(yùn)動(dòng),速度為每秒2個(gè)單位長(zhǎng)度,到達(dá)點(diǎn)后停止運(yùn)動(dòng),點(diǎn)是上的點(diǎn),設(shè)的面積為,點(diǎn)運(yùn)動(dòng)的時(shí)間為秒,與的函數(shù)關(guān)系如圖②所示.(1)圖①中= ,= ,圖②中= .(2)當(dāng)=1秒時(shí),試判斷以為直徑的圓是否與邊相切?請(qǐng)說明理由:(3)點(diǎn)在運(yùn)動(dòng)過程中,將矩形沿所在直線折疊,則為何值時(shí),折疊后頂點(diǎn)的對(duì)應(yīng)點(diǎn)落在矩形的一邊上.【答案】(1)8,18,20。或135176。或45176。=+90=176。=135176?!唳?90176。;Ⅱ、當(dāng)AN=ON時(shí),∴∠NAO=∠AON=45176?!唳?∠ANO+90176?!唷螦NO=∠AON=176。=45176。∴α=90176。;Ⅱ、當(dāng)AN=ON時(shí),∴∠NAO=∠AON=45176。∵∠ADO=45176?!郃G′⊥DE′;(3)①正方形OE′F′G′的邊OG′與正方形ABCD的邊AD相交于點(diǎn)N,如圖3,Ⅰ、當(dāng)AN=AO時(shí),∵∠OAN=45176?!咚倪呅蜲EFG是正方形,∴OG′=OE′,∠E′OG′=90176。由四邊形OEFG是正方形,得到OG′=OE′,∠E′OG′=90176。176。176。),若△AON是等腰三角形,請(qǐng)直接寫出α的值.【答案】(1)證明見解析;(2)證明見解析;(3)176。AC=AB,∴在△ABE和△ACF中,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,則S△ABE=S△ACF.故S四邊形AECF=S△AEC+S△ACF=S△A
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1